Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
b: Xet ΔMCB có
MH vừa là đường cao, vừa là trung tuyến
=>ΔMCB cân tại M
=>MB=MC
mà MH là đường cao
nên MH là phân giác của góc BMC
a: ΔABC cân tại A
mà AH là đường cao
nên AH là phân giác của góc BAC và HB=HC
b: Xét ΔABM và ΔACM có
AB=AC
góc BAM=góc CAM
AM chung
Do đó: ΔABM=ΔACM
c: ΔABM=ΔACM
=>MB=MC
d: Vì MB=MC
nên ΔMBC cân tại M
A)TA CÓ TAM GIÁC ABC CÂN TẠI A NÊN AB=AC
DO AH VUÔNG GÓC VS BC NÊN HB=HC
SUY RA H LÀ TRUNG ĐIỂM CỦA BC
B)XÉT TAM GIÁC MBH VÀ TAM GIÁC MCH CÓ:
MB=MC(GT)
HB=HC(CMT)
MH LÀ CẠNH CHUNG NÊN HOẶC MH VUÔNG GÓC VS BC
TG MBH=TG MCH (C.C.C)-(CẠNH HUYỀN-CẠNH GÓC VUÔNG)
SUY RA GÓC BMH= GÓC CMH
TA CÓ : BMH+CMH=BMC SUY RA MH LÀ TIA PHÂN GIÁC CỦA GÓC BMC
C)CÒN PHẦN C MỊ CHỊU MỊ CX LƯỜI TÍNH
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
ΔABC vuông tại A
mà AH là trung tuyến
nên AH=BC/2
b: MB^2=(BH-HM)^2
=BH^2-2*BH*HM+HM^2
=BH^2-2*BH*HM+MA^2-AH^2
MC^2=(MH+HC)^2
=MH^2+HC^2+2*MH*HC
=HC^2+2*MH*HB+MA^2-AH^2
=>MB^2+MC^2
=BH^2-2*BH*HM+MA^2-AH^2+HC^2+2*MH*HB+MA^2-AH^2
=2AM^2
a: Xét ΔHBA vuông tại H và ΔHCA vuông tại H có
AH chung
AB=AC
Do đó: ΔHBA=ΔHCA
b: Xét ΔABM và ΔACM có
AB=AC
góc BAM=góc CAM
AM chung
Do đó: ΔABM=ΔACM
=>góc MAB=góc MAC
c: ΔABM=ΔACM
nên MB=MC