Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
D là tđiểm của AB
E là tđiểm của AC
Do đó: DE là đường trung bình
=>DE//FC và DE=FC
hay DECF là hình bình hành
Bn tự vẽ hình nha!
A, Xét tam giác ABC
e là trung điểm AB -gt
f là trung điểm AC-gt
-> EF là đg trung bình của tam giác ABC
->EF song song BC;EF=1/2 BC(đpcm)
B,
TA có tam giác abc cân tại a
mà am là đg trung tuyến(gt)
-> am là đg cao hay góc AMC bằng 90 độ
Xét tứ giác AMCK có
AF=FC=1/2AC(f là trung điểm AC - gt)
FK=FM=1/2KM( M đối K qua F- gt)
mà AC cắt KM tại F
->AMCK là hình bình hành
Ta có AMCK là hình bình hành(cmt)
mà có góc AMC= 90 độ ( cmt)
->AMCK là hcn( HÌNH bình hành có 1 góc vuông)
C, TA có AM là đg trung tuyến hay M là trung điểm AC
-> MB=MC
mà MC =AK( do AMCK là hcn-cmt)
-> MB=AK
ta có
AC=KM(do AMCK là hình chữ nhật)
mà AB= AC( tam giác ABC là tam giác cân-gt)
->KM=AB
Xét tứ giác ABMK có
AK=BM(Cmt)
AB=KM(cmt)
-> ABKM là hbh-đpcm
Xong rùi nhe bn
EF trùng với trung điểm của AC, BC => AE=EC, BF = CF
K là điểm đối xứng E qua F => FK = FE
=> tứ giác BKCE là hbh (2 đường chéo cắt nhau tại tr/đ mỗi đg)
b, tam giác ABC có AE = CE, BF = CF (C/m a)
=> FE là đg TB của A => FE//AB => góc BAC = góc KEC = 90 độ
ta có góc BEC = góc KEC + góc BEK mà KEC = 90 độ => BEC là góc tù nên tứ giác BKCE ko thể là hcn
(Sorry hình hơi củ chuối)
F E K
a: Xét tứ giác AEBF có
D là trung điểm của AB
D là trung điểm của EF
Do đó: AEBF là hình bình hành
b: Xét tứ giác ABFO có
AO//BF
AO=BF
Do đó: ABFO là hình bình hành
mà \(\widehat{BAO}=90^0\)
nên ABFO là hình chữ nhật
a: Xét ΔCBA có
H là trung điểm của BC
E là trung điểm của AC
Do đó: HE là đường trung bình của ΔCBA
Suy ra: HE//AB và \(HE=\dfrac{AB}{2}\)
hay HE//AD và HE=AD
Xét tứ giác ADHE có
HE//AD
HE=AD
Do đó: ADHE là hình bình hành
mà \(\widehat{EAD}=90^0\)
nên ADHE là hcn