K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2017

A B C D H K M N O

tam giác ABC cân tại A suy ra AB=AC và góc ABC = góc ACB

ta có \(\widehat{ABC}+\widehat{ABM}=180^o\\ \widehat{ACB}+\widehat{ACN}=180^o\)mà \(\widehat{ABC}=\widehat{ACB}\)\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)

dễ thấy tam giác \(ABM=\Delta ACN\left(c.g.c\right)\)

suy ra AM = AN ( 2 cạnh tương ứng )

tam giác AMN có AM = AN suy ra tam giác AMN là tam giác cân

b) tam giác ABm = tam giác ACN suy ra góc MAB = góc NAC ( 2 góc tương ứng )

dễ thấy tam giác HBA = tam giác KCA ( cạnh huyền - góc nhọn )

suy ra BA = Ck ( 2 cạnh tương ứng ) 

c) \(\Delta AHK\)có AH=AK suy ra \(\Delta AHk\) là tam giác cân

\(\Delta AHK\)và  \(\Delta AMN\) có chung đỉnh

mà 2 tam giác này là 2 tam giác cân suy ra \(\widehat{AHK}=\widehat{AKH}=\widehat{AMN}=\widehat{ANM}\\ hay\widehat{AHK}=\widehat{AMN}\)

mà 2 góc này ở vị trí đồng vị bằng nhau suy ra HK//MN

d) kéo dài HB và CK cắt nhau tại O

nối AO

xét \(\Delta⊥AHO\)và \(\Delta⊥AKO\)

AO là cạnh huyền chung

AH = AK

do đó \(\Delta AHO=\Delta AKO\) ( cạnh huyền - cạnh góc vuông )

e) xét tam giác \(BAD\)và \(\Delta CAD\)

BA = CA ( tam giác ABC cân tại A )

DA = DC (gt)

AD là canh chung 

do đó \(\Delta BAD=\Delta CAD\left(c.c.c\right)\)

phù phù mệt quá còn mấy cái cuối gửi bn sau mk đi ngủ đã

26 tháng 1 2017

tiếp nhé

suy ra góc BAD = góc CAD ( 2 góc tương ứng )

vì tia AD nằm giữa 2 tia AB và AC nên AD là phân giác góc BAC (1)

ta có BH = CK ( cmt)

và HO = KO (cmt)

suy ra HO-HB=OK-CK ( vì B nằm giữa H và O , C nằm giữa O và K )

hay BO = OC

xét \(\Delta BAO\)và \(\Delta CAO\)có \(\hept{\begin{cases}AOchung\\BO=OC\left(cmt\right)\\BA=CA\left(gt\right)\end{cases}}\)

do đó \(\Delta BAO=\Delta CAO\left(c.c.c\right)\)

suy ra góc BAO = góc CAO ( 2 góc tương ứng )

vì tia AO nằm giữa 2 tia AB và AC suy ra AO là phân giác góc BAC (2)

từ (1) và (2) suy ra A;D;O thẳng hàng 

16 tháng 2 2020

Câu a

Xét tam giác vuông AB0 và tam giác vuông ACO 

AB=AC( gt )

AO cạnh chung 

=> Tam giác ABO = Tam giác ACO (ch-cgv)

=>OB=OC( 2 cạnh tương ứng )

Xét tam giác vuông MBO và tam giác vuông NCO

MB=NC ( gt)

OB=OC (cmt)

=>Tam giác MBO = Tam giác NCO(  2 cgv )

=>OM=ON

=>tam giác NOM cân tại 0

cTa có tam giác NOM cân tại O

Lại có : HOB^=HOC^ (cn câu a)

=.HOM^+MOB^=HON^+NOC^

Mà MOB^=NOC^ (cm câu a)

=>HOM^=HON^

Xét tam giác MEO và tam giác NEO

EO cạnh chung

EOM^=EON^ (cmt)

OM=ON ( cm câu a)

=>Tam giác EOM=tam giác EON ( c-g-c )

=> OEN^=OEM^

Mà OEN^+OEM^=180* (góc bẹt)

=>OEM^=OEN^=180*/2=90* ( đpcm )

16 tháng 2 2020

- câu b làm thế nào vậy ạ?

30 tháng 1 2020

A B C H M N K D E = = x x

  GT

 △ABC cân tại A. BM ⊥ AC, CN ⊥ AB.

 BM ∩ CN = {K}. AK ∩ BC = {H}.

 MD = MK ; NE = NK

   KL

 a. BM = CN

 b, AK là p/g BAC

 c, AK ⊥ BC

 d, △AED cân

Bài giải:

a, Xét △BMA vuông tại M và △CNA vuông tại N

Có: AB = AC (△ABC cân tại A)

      BAC là góc chung  

=> △BMA = △CNA (ch-gn)

=> BM = CN (2 cạnh tương ứng)

b, Xét △NKA vuông tại N và △MKA vuông tại M

Có: AN = AM (△BMA = △CNA)

       AK là cạnh chung

=> △NKA = △MKA (ch-cgv)

=> NAK = MAK (2 góc tương ứng)    (1)

Và AK nằm giữa AN và AM

Mà N \in  AB ; M \in  AC

=> AK nằm giữa AB và AC      (2)

Từ (1) và (2)

=> AK là phân giác BAC

c, Xét △BAH và △CAH 

Có: BA = CA (cmt)

    BAH = CAH (cmt)

   AH là cạnh chung

=> △BAH = △CAH (c.g.c)

=> BHA = CHA (2 góc tương ứng)

Mà BHA + CHA = 180o (2 góc kề bù)

=> BHA = CHA = 180o : 2 = 90o

=> AH ⊥ BC

Mà AK ∩ BC = {H}

=> AK ⊥ BC

d,  Xét △NEA vuông tại N và △NKA vuông tại N

Có: NE = NK (gt)

    AN là cạnh chung

=> △NEA = △NKA (2cgv)

=> AE = AK (2 cạnh tương ứng)

Xét △DMA vuông tại M và △KMA vuông tại M

Có: MD = MK (gt)

    AM là cạnh chung

=> △DMA = △KMA (2cgv)

=> AD = AK (2 cạnh tương ứng)

Mà AE = AK (cmt)

=> AD = AE

Xét △ADE có: AD = AE (cmt) => △ADE cân tại A

a: Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó:ΔABM=ΔACN

b: Xét ΔHMB vuông tại H và ΔKNC vuông tại K có

MB=NC

\(\widehat{M}=\widehat{N}\)

Do đó: ΔHMB=ΔKNC

Suy ra: BH=CK

c: Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC

BH=CK

Do đó:ΔABH=ΔACK

Suy ra:  AH=AK

Xét ΔAMN có AH/AM=AK/AN

nên HK//MN

hay HK//BC

d: Ta có: ΔHBM=ΔKCN

nên \(\widehat{HBM}=\widehat{KCN}\)

=>\(\widehat{OBC}=\widehat{OCB}\)

hay ΔOBC cân tại O

24 tháng 2 2022

Cám ơn nhiều ạ!

22 tháng 2 2022

đừng nói như vậy mà khocroi

Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE
Do đó: ΔABD=ΔACE

Suy ra: AD=AE

Xét ΔDMB vuông tại M và ΔENC vuông tại N có

DB=EC

\(\widehat{D}=\widehat{E}\)

Do đó: ΔDMB=ΔENC

Suy ra: \(\widehat{DBM}=\widehat{ECN}\)

=>\(\widehat{OBC}=\widehat{OCB}\)

=>ΔOBC cân tại O

=>OB=OC

hay O nằm trên đường trung trực của BC(1)

Ta có:AB=AC

nên A nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AO là đường trung trực của BC

=>AO⊥BC

=>AO⊥DE

Ta có: ΔADE cân tại A

mà AO là đường cao

nên AO là phân giác