K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2017

Ta có tam giác ABC vuông tại A

Áp dụng định lí PITAGO:

=> BC2 = 162 + 122

=> BC2 = 400

=> BC = 20 cm

Bạn sẽ chứng minh đc tam giác ABC và tam giác ABH đồng dạng (nếu bạn học lớp 8)

=> \(\frac{AH}{AC}=\frac{AB}{BC}\) hay \(\frac{AH}{16}=\frac{12}{20}\)

=> \(AH=\frac{12\cdot16}{20}\) = 9,6 cm

Ta có tam giác ABH vuông tại H

Áp dụng định lí PITAGO:

=> AB2 = AH2 + BH2

=> BH2 = AB2 - AH2

=> BH2 = 162 - 9,62

=> BH2 = 51,84

=> BH = 7,2 cm

Ta có tam giác ACH vuông tại H

Áp dụng định lí PITAGO:

=> AC2 = AH2 + HC2

=> HC2 = AC2 - AH2

=> HC2 = 122 - 9,62

=> HC2 = 51,84

=> HC = 7,2 cm

Vậy AH = 9,6 cm

BH = 7,2 cm

CH (HC) = 7,2 cm

19 tháng 2 2017

A B C 16 12 H

Bổ sung đề: \(\widehat{B}=30^0\)

a) Xét ΔABC vuông tại A có \(\widehat{B}=30^0\)(gt)

mà cạnh đối diện với \(\widehat{B}\) là cạnh AC

nên \(AC=\dfrac{1}{2}\cdot BC\)(Định lí tam giác vuông)

\(\Leftrightarrow AC=\dfrac{1}{2}\cdot7=\dfrac{7}{2}cm\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AB^2=7^2-\left(\dfrac{7}{2}\right)^2=\dfrac{147}{4}\)

hay \(AB=\dfrac{7\sqrt{3}}{2}cm\)

Vậy: AC=3,5cm; \(AB=\dfrac{7\sqrt{3}}{2}cm\)

Hình bạn tự vẽ nha

c)Có BH=9 ; HC=16 mà BH+HC=BC => BC=25

Xét tam giác ABC vuông tại A có:

    AB^2 + AC^2 = BC^2 (đ/l Py-ta-go)

          mà BC=25

=>AB^2+AC^2=25^2=625

Xét tam giác AHB vuông tại H có:

    AB^2=AH^2+BH^2   (1)

Xét tam giác AHC vuông tại H có:

     AC^2=AH^2+HC^2   (2)

Cộng từng vế của (1) và (2) ta được :

  AB^2+AC^2=(AH^2+BH^2)+(AH^2+HC^2)

                      =2AH^2+BH^2+HC^2

mà AB^2+AC^2=625 ; BH=9 ; HC=16

=>625=2AH^2+81+256

=>625=2AH^2+337

=>2AH^2=625-337=288

=>AH^2=144

=>AH=12

d)Gọi M là trung điểm của BC => BC=2BM=2CM

Có AH vuông góc BC mà AB<AC

=>HB<HC  mà HB+HC=BC

=>HB<1/2 BC 

=>HB<BM

Có AH vuông góc BC hay AH vuông góc HM

=>tam giác AHM vuông tại H

=>AH<AM (AM là cạnh huyền)

 CM được AH=AD=AE

mà AH<BM

=>BM>AD và BM>AE

=>2BM > AD+AE=DE

mà 2BM=BC

=>BC>DE

=>BH+HC>DE

hay BD+CE>DE  (CM được BH=BD và HC=CE)

Vậy.....

 

28 tháng 12 2021

1 diện tích tam giác là: (16x12):2= 96

2) Có ΔABC vuông , theo định lý Pytago ta có :

 AB +  AC2 =  BC2

=> 162 + 122 = BC2

=> 400            = BC2

=> BC             = 20 (cm)

Ta có :  SΔABC  =  SΔABH +  SΔACH

=>  BH.AH/2+HC.AH/2=SΔABC

=> BH^2.AH+HC^2.AH/2=SΔABC

=> AH.(BH^2+HC)2=SΔABC

=> AH.BC^2/2              =  96

=> AH                         =  96 .  2/BC = 96 .  2/20 = 9.6 (cm)

3) Có ΔABH vuông , theo định lý Pytago ta có :

    BH2 = AB2 - AH2

=>BH= 162 - 9.62 = 163.84

=> BH = 12.8 (cm)

=> CH = BC - BH = 20 - 12.8 = 7.2 (cm)

 

28 tháng 12 2021

cảm ơn bạn nha

7 tháng 2 2017

tam giác AHB vuông tại H ,THEO ĐỊNH LÝ PYTA GO TA CÓ

AB^2=AH^2+BH^2=>AB^2=169=>AB=13 CM

TAM GIÁC AHC VUÔNG TẠI H,THEO ĐỊNH LÝ PYTA GO TA CÓ

HC^2+AH^2=AC^2=>HC^2=AC^2-AH^2=>HC^2=256=>HC=16CM

VÌ H NẰM GIỮA BC => BC=BH+HC=21 CM

=>CHU VI TAM GIÁC ABC LÀ

AB+AC+BC=13+21+20=54 CM

23 tháng 1 2017

Bài 1: (bạn tự vẽ hình vì hình cũng dễ)

Ta có: AB = AH + BH = 1 + 4 = 5 (cm)

Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)

Xét tam giác BCH vuông tại H có:

  \(HB^2+CH^2=BC^2\left(pytago\right)\)

  \(4^2+CH^2=5^2\)

  \(16+CH^2=25\)

\(\Rightarrow CH^2=25-16=9\)

\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)

Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé

23 tháng 1 2017

Bài 2: Sử dụng pytago với tam giác ABH => AH

Sử dụng pytago với ACH => AC

21 tháng 8 2017

2)BC2=AB2+AC2=>162+122=400=>\(\sqrt{400}\)=20cm

a.h=b.c=>h=(b.c):a =>h=(12.16):20=9,6 cm

1)Diện tích tam giác ABC là:\(\frac{1}{2}\).12.16=96cm

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Lời giải:

Áp dụng định lý Pitago:

$AC=\sqrt{BC^2-AB^2}=\sqrt{13^2-5^2}=12$ (cm)

$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{5.12}{13}=\frac{60}{13}$ (cm)

$CH=\sqrt{AC^2-AH^2}=\sqrt{12^2-(\frac{60}{13})^2}=\frac{144}{13}$ (cm)

$BH=BC-CH=13-\frac{144}{13}=\frac{25}{13}$ (cm)

 

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Hình vẽ:

undefined

1 tháng 3 2018

Tam giác ABC vuông tại A nên áp dụng định lí Pytago ta có:

AB2 + AC2 =  BC2 

<=> 122+92 = BC2

<=> BC2 =225

Mà BC >0 => BC =15 cm

Ta có : SABC = 1/2.AB.AC=1/2.AH.BC

<=> AB.AC=AH.BC

<=> 12.9=AH.15

<=> AH=7,2 ( cm)

Tam giác ABH vuông tại H ( AH vuông góc BC ) nên áp dụng định lí Pytago ta có

AB2=BH2+AH2

<=> 122=BH2+7,22

<=>BH2= 92,16

Mà BH >0 => BH=9,6(cm)

Ta có BH+CH=BC ( H nằm giữa B và C)

    <=> 9,6 +CH = 15

   <=> CH = 5,4 ( cm)

Vậy AH= 7,2 ( cm)

       BH=9,6 (cm)

       CH= 5,4 (cm)

Tk mình nhé!! 

~~ Học tốt~~