Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đầu bài ta có : \(\cot\frac{A}{2}+\cot\frac{C}{2}=2\cot\frac{B}{2}\Leftrightarrow\frac{\sin\frac{A+C}{2}}{\sin\frac{A}{2}\sin\frac{C}{2}}=2\frac{\cos\frac{B}{2}}{\sin\frac{B}{2}}=2\frac{\sin\frac{A+C}{2}}{\cos\frac{A+C}{2}}\)
\(\Leftrightarrow\sin\left(\frac{A+C}{2}\right)\cos\left(\frac{A+C}{2}\right)=2\sin\frac{A}{2}\sin\frac{C}{2}\sin\frac{A+C}{2}=\left(\cos\frac{A-C}{2}-\cos\frac{A+C}{2}\right)\sin\frac{A+C}{2}\)
\(\Leftrightarrow2\sin\frac{A+C}{2}\cos\frac{A+C}{2}=\cos\frac{A-C}{2}\sin\frac{A+C}{2}\)
\(\Leftrightarrow2\sin\left(A+C\right)=\frac{1}{2}\left(\sin A+\sin C\right)\)
\(\Leftrightarrow\sin A+\sin C=2\sin B\Rightarrow a+c=2b\)
Chứng tỏ 3 cạnh của tam giác lập thành cấp số cộng
TenAnh1 TenAnh1 A = (-4.36, -6.06) A = (-4.36, -6.06) A = (-4.36, -6.06) B = (11, -6.06) B = (11, -6.06) B = (11, -6.06)
Theo giả thiết ta có : \(\cot A+\cot C=2\cot B\)
\(\Leftrightarrow\frac{\sin\left(A+C\right)}{\sin A\sin C}=\frac{2\cos B}{\sin B}\)
\(\Leftrightarrow\sin^2B=2\sin B\sin C\cos B=\left[\cos\left(A-C\right)-\cos\left(A+C\right)\right]\cos B\)
\(\Leftrightarrow\sin^2B=\cos\left(A-C\right)\cos B-\cos\left(A+C\right)\cos B=-\cos\left(A-C\right)\cos\left(A+C\right)+\cos^2B\)
\(\Leftrightarrow\sin^2B=-\frac{1}{2}\left(\cos2A+\cos2C\right)+1-\sin^2B=-\frac{1}{2}\left(1-2\sin^2A+1-2\sin^2C\right)+1-\sin^2B\)
\(\Rightarrow2\sin^2B=\sin^2A+\sin^2C\Leftrightarrow2b^2=a^2+c^2\)
Vậy chứng tỏ \(a^2,b^2,c^2\) theo thứ tự đó cũng lập thành một cấp số cộng
Từ giả thiết ta có hệ phương trình : \(\begin{cases}\tan A.\tan B=6\\\tan A.\tan C=3\end{cases}\)
Mặt khác, ta cũng có : \(-\tan B=\tan\left(A+C\right)=\frac{\tan A+\tan C}{1-\tan A.\tan C}=\frac{\tan A+\tan C}{1-3}=-\frac{1}{2}\left(\tan A+\tan C\right)\)
\(\Leftrightarrow2\tan B=\tan A+\tan C\)
\(\Leftrightarrow2\tan A\tan B=1\tan^2A+\tan A.\tan C\)
\(\Leftrightarrow2.6=2\tan^2A+3\)
\(\Leftrightarrow\tan^2A=9\)
Theo giả thiết : \(\tan A\tan B=6>0\)
\(\tan A\tan C=3>0\)
Cho nên \(\tan A>0,\tan B>0,\tan C>0\)
Suy ra \(\tan A=3,\tan B=2,\tan C=1\)
Điều đó chứng tỏ \(\tan A,\tan B,\tan C\) lập thành cấp số cộng có công sai d = 1
Đặt BC = a; CA = b; AB = c.
Theo định lý hàm sin và định lý hàm cos, ta sẽ có:
\(\frac{sinB}{sinA}=\frac{b}{a};\frac{sinC}{sinA}=\frac{c}{a};\)
\(cosB=\frac{c^2+a^2-b^2}{2ca};cosC=\frac{a^2+b^2-c^2}{2ab}\).
Do đó:
\(sinA=\frac{sinB+sinC}{cosB+cosC}\)
\(\Leftrightarrow\frac{sinB}{sinA}+\frac{sinC}{sinA}=cosB+cosC\)
\(\Leftrightarrow\frac{b}{a}+\frac{c}{a}=\frac{c^2+a^2-b^2}{2ca}+\frac{a^2+b^2-c^2}{2ab}\)
\(\Leftrightarrow b+c=\frac{c^2b+a^2b-b^3+a^2c+b^2c-c^3}{2bc}\)
\(\Leftrightarrow a^2b+a^2c-b^3-c^3=b^2c+bc^2\)
\(\Leftrightarrow\left(b+c\right)\left(b^2+c^2\right)=a^2\left(b+c\right)\Leftrightarrow a^2=b^2+c^2\).
Theo định lý Pythagoras đảo, tam giác ABC vuông tại A.
Theo giả thiết ta có : \(\begin{cases}\left(5x-y\right)+\left(x+2y\right)=2\left(2x+3y\right)\\\left(y+1\right)^2\left(x-1\right)^2=\left(xy+1\right)^2\end{cases}\)
\(\Leftrightarrow\begin{cases}2x=5y\\x+y=2\end{cases}\) hoặc \(\Leftrightarrow\begin{cases}2x=5y\\xy+x+y=0\end{cases}\)
\(\Leftrightarrow\begin{cases}2x=5y\\x+y=2\end{cases}\) hoặc \(\Leftrightarrow\begin{cases}2x=5y\\y\left(5y\right)+5y+2y=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x=\frac{10}{3}\\y=\frac{4}{3}\end{cases}\) hoặc \(\begin{cases}x=0,y=0\\x=-\frac{3}{4},y=-\frac{3}{10}\end{cases}\)
Nếu 3 cạnh a, b, c lập thành cấp số cộng thì ta có a + c = 2b
\(\Leftrightarrow\sin A+\sin C=2\sin B\Leftrightarrow2\sin\frac{A+C}{2}\cos\frac{A-C}{2}=4\sin\frac{B}{2}\cos\frac{B}{2}\left(1\right)\)
Vì \(A+C=180^0-B\Rightarrow\frac{A+C}{2}=90^0-\frac{B}{2}\)
<=> \(\sin\frac{A+C}{2}=\sin\left(90^0-\frac{B}{2}\right)=\cos\frac{B}{2}\) hoặc \(\cos\frac{A+C}{2}=\cos\left(90^0-\frac{B}{2}\right)=\sin\frac{B}{2}\) (*)
Do đó (1) trở thành :
\(\Leftrightarrow\sin\frac{A+C}{2}\cos\frac{A-C}{2}=2\sin\frac{A+C}{2}\cos\frac{A+C}{2}\)
\(\Leftrightarrow\cos\frac{A-C}{2}=2\sin\frac{B}{2}\)
\(\Leftrightarrow\cos\frac{A-C}{2}=2\cos\frac{A+C}{2}\)
\(\Leftrightarrow\cos\frac{A}{2}\cos\frac{C}{2}+\sin\frac{A}{2}\sin\frac{C}{2}=2\cos\frac{A}{2}\cos\frac{C}{2}-2\sin\frac{A}{2}\sin\frac{C}{2}\)
\(\Leftrightarrow\cos\frac{A}{2}\cos\frac{C}{2}=3\sin\frac{A}{2}\sin\frac{C}{2}\)
\(\Leftrightarrow\cot\frac{A}{2}\cot\frac{C}{2}=3\) => Điều phải chứng minh
Theo giả thiết ta có hệ : \(\begin{cases}A=90^0\\a,b,\frac{\sqrt{6}}{3},c\end{cases}\)\(\Leftrightarrow\begin{cases}a^2=b^2+c^2\\\frac{2}{3}b^2=ac\Leftrightarrow b^2=\frac{3}{2}ac\end{cases}\)
Từ đó suy ra \(a^2=\frac{3}{2}ac+c^2\Leftrightarrow2a^2=3ac+2c^2\Leftrightarrow\left(2a+c\right)\left(a-2c\right)=0\)
\(\Rightarrow a=2c\left(2a+c>0\right)\)
Mà \(\cos B=\frac{c}{a}=\frac{1}{2}\Rightarrow B=60^0,C=30^0\)
Vậy tam giác ABC là tam giác nửa đều
\(a,b,c\)theo thứ tự lập thành cấp số cộng nên \(a-b=b-c\).
\(d\)là công sai của cấp số cộng.
Nếu \(d=0\)dễ dàng thấy đẳng thức cần chứng minh là đúng.
Nếu \(d\ne0\):
\(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{\sqrt{a}-\sqrt{b}}{a-b}+\frac{\sqrt{b}-\sqrt{c}}{b-c}=\frac{\sqrt{a}-\sqrt{c}}{a-b}\)
\(=\frac{a-c}{\left(a-b\right)\left(\sqrt{a}+\sqrt{c}\right)}=\frac{2}{\sqrt{a}+\sqrt{c}}\)
<br class="Apple-interchange-newline"><div></div>a,b,ctheo thứ tự lập thành cấp số cộng nên a−b=b−c.
dlà công sai của cấp số cộng.
Nếu d=0dễ dàng thấy đẳng thức cần chứng minh là đúng.
Nếu d≠0:
1√a+√b +1√b+√c =√a−√ba−b +√b−√cb−c =√a−√ca−b
=a−c(a−b)(√a+√c) =2√a+√c
Giả sử 3 cạnh của tam giác ABC theo thứ tự a, b, c. Không giảm tính tổng quát, ta giả sử 0 < a \(\le b\le c\), nếu chúng tạo thành cấp số nhân thì, theo tính chất của cấp số nhân ta có : \(b^2=ac\)
Theo định lí hàm số côsin, ta có :
\(b^2=a^2+c^2-2ac\cos B\Rightarrow ac=a^2+c^2-2ac.\cos B\)
\(\Leftrightarrow\cos B=\frac{a^2+c^2}{2ac}-\frac{1}{2}\)
Mặt khác \(a^2+c^2\ge2ac\Rightarrow\cos B\ge1-\frac{1}{2}=\frac{1}{2}\)
Vậy góc \(B\le60^0\)
Nhưng \(a\le b\Rightarrow A\le60^0\) cho nên tam giác ABC có 2 góc không quá \(60^0\)
Đáp án C