Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔHBA vuông tại A và ΔHBD vuông tại D có
BH chung
BA=BD(gt)
Do đó: ΔHBA=ΔHBD(cạnh huyền-cạnh góc vuông)
a: Xet ΔBAH vuông tại A và ΔBDH vuông tại D có
BH chung
BA=BD
=>ΔBAH=ΔBDH
b: Xét ΔBDI vuông tại D và ΔBAC vuông tại A có
BA=BD
góc B chung
=>ΔBDI=ΔBACC
=>BI=BC
c: Xét ΔHAI vuông tại A và ΔHDC vuông tại D có
HA=HD
góc AHI=góc DHC
=>ΔHAI=ΔHDC
=>HI=HC
=>H nằm trên trung trực của IC
mà BM là trung trực của IC
nên B,M,H thẳng hàng
A) ta có :AB2=32=9
AC2=42=16
BC2=52=25
=>AB2+AC2=BC2(định lí pytago đảo)
=> tam giác ABC là tam giác vuông tại A
Chúc bạn học tốt!!!
a, Ta có :
\(AB^2+AC^2=3^2+4^2=9+16=25\)
\(BC^2=5^5=25\)
Vì AB^2 + AC^2 = BC^2
=> \(\Delta\)ABC là tam giác vuông tại A ( Pi - ta - go đảo )
b, Xét \(\Delta\)ABH và \(\Delta\)DBH ta có
^A = ^D = 900
AB = BD (gt)
=> \(\Delta\)ABH = \(\Delta\)DBH (ch-cgv)
=> ^HBD = ^ABH (tương ứng)
Vậy BH là p/g ^ABH
a)Ta có: BC2 = 52 = 25
AB2 + AC2 = 32 + 42 = 25
Vì AB2 + AC2 = BC2
=> Tam giác ABC vuông tại A (Theo định lí py-ta-go đảo).
b) Xét tam giác ABH và tam giác DBH có:
Gc A = Gc D(=900)
AB=BD (gt)
HB cạnh huyền chung.
Do đó: tam giác ABH = tam giác DBH (ch-cgv)
=> Gc ABH = Gc HBD (2 góc tưng ứng)
=> BH là phân giác của Gc ABC
c) P/s: Bn viết sai đề thì phải. Tg ABC không thể cân. Mà Tg AMB hoặc Tg AMC mới cân.
Xét tg ABC vng tại A.(cm ở câu a)
Có AM là trung tuyến.
=> AM = BM = CM (Vì trung tuyến ứng vs cạnh huyền thì = nửa cạnh huyền)
=> Tg AMB hoặc Tg AMC cân.
a) Ta có :
BC2 = 52 = 25
AB2 + AC2 = 32 + 42 = 25
=> BC2 = AB2 + AC2
=> \(\Delta ABC\) vuông tại A
b) Xét \(\Delta HBA\) và \(\Delta HBD\) ,có :
BA = BD ( gt )
\(\widehat{BAH}=\widehat{BDH}=90^0\)
BH : cạnh chung
=> \(\Delta HBA=\Delta HBD\left(ch-cgv\right)\)
=> \(\widehat{ABH}=\widehat{DBH}\)
=> BH là tia phân giác của \(\widehat{ABD}\)
c) " I " ở đâu v bê trần
câu c đâu bạn