K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2019

#)Giải :

Vì AD,BE,CF là ba đường phân giác

\(\Rightarrow\frac{FA}{FB}=\frac{CA}{CB};\frac{DB}{DC}=\frac{AB}{AC};\frac{EC}{EA}=\frac{BC}{BA}\)

\(\Rightarrow\frac{FA}{FB}.\frac{DB}{DC}.\frac{EC}{EA}=\frac{CA.AB.BC}{CB.AC.BA}=1\left(đpcm\right)\)

Tham khảo tại :

Câu hỏi của Phạm Hoàng - Toán lớp 8 | Học trực tuyến

< https://h.vn/hoi-dap/question/555217.html >

~ chúc bn học tốt~

7 tháng 4 2022

Áp dụng t/c đường phân giác, ta có:

\(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)   ( 1 )

\(\dfrac{BC}{BA}=\dfrac{EC}{EA}\)  ( 2 )

\(\dfrac{CA}{CB}=\dfrac{FA}{FB}\) ( 3 )

Nhân từng vế (1);(2);(3) ta được:

\(\dfrac{AB}{AC}\times\dfrac{BC}{BA}\times\dfrac{CA}{CB}=\dfrac{BD}{CD}\times\dfrac{EC}{EA}\times\dfrac{FA}{FB}\)

\(\Leftrightarrow1=\dfrac{BD}{CD}\times\dfrac{EC}{EA}\times\dfrac{FA}{FB}\)

 

7 tháng 4 2022

ADAD là đường phân giác ˆA→ABAC=DBDCA^→ABAC=DBDC

BEBE là đường phân giác ˆB→BCBA=ECEAB^→BCBA=ECEA

CFCF là đường phân giác ˆC→CACB=FAFBC^→CACB=FAFB

→DBDC.ECEA.FAFB=ABAC.BCBA.CACB=AB.BC.CAAC.BA.CB=1

1 tháng 6 2018

AD,BE,CF là phân giác

ta có \(\dfrac{FA}{FB}.\dfrac{DB}{DC}.\dfrac{EC}{EA}=\dfrac{AB}{AC}.\dfrac{BC}{BA}.\dfrac{CA}{CB}\)

do \(\dfrac{FA}{FB}=\dfrac{CA}{CB};\dfrac{DB}{DC}=\dfrac{AB}{AC};\dfrac{EC}{EA}=\dfrac{BC}{BA}\)

\(\dfrac{AB}{AC}.\dfrac{BC}{BA}.\dfrac{CA}{CB}=1\)

nên \(\dfrac{FA}{FB}.\dfrac{DB}{DC}.\dfrac{EC}{EA}=1\)

Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng \(a, \frac {AB+AC}{2}\)\(b,BE+CF < \frac{3}{2}BC\)\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CNBài 3 . Cho tam giác ABC , góc B = 450 , đường cao AH ,...
Đọc tiếp

Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng 

\(a, \frac {AB+AC}{2}\)

\(b,BE+CF < \frac{3}{2}BC\)

\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)

Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CN

Bài 3 . Cho tam giác ABC , góc B = 45, đường cao AH , phân giác BD của tam giác ABC , biết góc BDA = 450 . Chứng minh HD//AB 

Bài 4 . Cho tam giác ABC không vuông , các đường trung trực của AB , AC cắt nhau tại O , cắt BC theo thứ tự M,N . Chứng minh AO là phân giác của góc MAN .

Bài 5 : Cho tam giác ABC nhọn , đường cao BD , CE cắt nhau tại H . Lấy K sao cho AB là trung trực của HK . Chứng minh góc KAB = góc KCB 

0