K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2020

a, dùng pytago tính ra BC = 10 cm

tam giác ABC có AD là phân giác (gt)

=> CD/AC = BD/AB (tính chất)

=> CD + DB/AB+AC = CD/AC + BD/AB

AB = 6; AC = 8; BC = 10 và CD + DB = BC

=> 10/14 = CD/8 = BD/6

=> CD = 40/7 và BD = 30/7

2 tháng 2 2021

câu a là chứng minh goc BAC nhé

Bài 6: 

a: Xét tứ giác AKDH có 

\(\widehat{AKD}=\widehat{AHD}=\widehat{KAH}=90^0\)

Do đó: AKDH là hình chữ nhật

b: Ta có: ΔABC vuông tại A

mà AD là đường trung tuyến

nên AD=BC/2=2,5(cm)

11 tháng 1 2022

a. Tứ giác AKDH là hình chữ nhật , vì có góc \(DKA=KAH=DHA=90^o\)

b, áp dụng đl pytago vào tam giác vuông ABC có :

\(BC^2=AB^2+AC^2\Leftrightarrow BC=\sqrt{4^2+3^2}=5cm\)

vì AD là trung tuyến tam giác vuông ABC nên :

\(AD=\dfrac{1}{2}BC=\dfrac{1}{2}.5=2,5cm\)

c,vì AKDH là hình chữ nhật nên : DH//KA

mà D là trung điểm BC 

=>H là trung điểm AC

<=>AH=\(\dfrac{1}{2}AC=\dfrac{1}{2}.3=1,5cm\) 

vì AH = 1,5 cm nên => KD cũng = 1,5cm (AKDH là hình chữ nhật)

\(S_{ABD}=\dfrac{1}{2}.AB.KD=\dfrac{1}{2}.4.1,5=3cm^2\)

 

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

góc ABD=góc HBD

=>ΔBAD=ΔBHD

=>DA=DH

b: DA=DH

DH<DC

=>DA<DC

c: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có

BH=BA

góc HBK chung

=>ΔBHK=ΔBAC

=>BK=BC

=>ΔBKC cân tại B

13 tháng 12 2020

a/ Tứ giác AKDH có:

^BAC = ^AKD = ^AHD = 90° (GT).

=>AKDH là hình chữ nhật

b/ Áp dụng định lí Pythagoras vào ∆ABC vuông tại A có:

BC^2=AB^2+AC^2.

=>BC^2=9+16=25

=> BC = 5 (cm)

Xét ∆ABC vuông tại A có AD là đường trung tuyến.

=>AD = 1/2BC=2,5 (cm)

b/ Có:

DK vuông góc vs AB.

AB vuông góc vs AC.

=> DK // AC.

Xét ∆ABC có:

DK // AC, K thuộc AB.

D là trung điểm BC.

=> K là trung điểm AB (đ/l)

=> KD là đường trung bình ∆ABC

=> KD = 1/2AC=1,5(cm)

S_(∆ABC)=1/2.KD.AB

=1/2.4.1,5

=2.1,5=3 (cm²)

10 tháng 7 2017

xét tam giác ABC vuông tại A có \(BC^2=AB^2+AC^2\left(pytagor\right)\)

\(\Rightarrow BC=10\left(cm\right)\)

xét tam giác ABC ta có AD  là đường phân giác => \(\frac{BD}{AB}=\frac{DC}{AC}=\frac{BC}{AB+AC}=\frac{5}{7}\)

=> BD= 30/7 (cm) ; DC= 40/7 (cm)

b/ có DH  vuông góc AB ; AC vuông góc AB (tam giác vuông)

=> DH//AC => \(\frac{DH}{AC}=\frac{BD}{BC}=\frac{BH}{AB}\)(hệ quả Thales) => \(DH=\frac{AC.BD}{BC}=\frac{24}{7}\left(cm\right)\)

ta có HAD=CAD (p/giác) ; HDA=CAD( 2 góc slt; DH//AC) => HAD=HDA => tam giác AHD cân tại H

mà tam giác AHD vuông tại H => tam giác AHD vuông cân tại H

=> \(AD^2=2DH^2\)=> \(AD=\frac{24\sqrt{2}}{7}\left(cm\right)\)

mình ko tính ra số thập phân. Bạn tự tính nhé. Chúc bn học tốt

11 tháng 7 2017

Thanks bạn

20 tháng 7 2018

Áp dụng Pitago ta có : BC = 10

Áp dụng tính chất của tia phân giác ta có : BD/DC = AB/AC = 3/4

=> BD/BC = 3/7 => BD = 30/7 cm, CD = 40/7 cm

HD // AC => HD / AC = BD / BC

=> HD = 30/70.8 = 24/7 

Do góc HAD = 45 độ => T/g HAD vuông cân => AD^2 = 1152/49 => AD = \(\frac{24\sqrt{2}}{7}\)cm