Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) AE//MC,ME//AC=>AEMC là hình bình hành
=>ME=AC
CM tương tự có ADMB là hình bình hành=>AB=MD
gọi P,Q lần lượt là giao của ABvới ME và AC với MD
Có AP//MQ,AQ//MP=>APMQ là hình bình hành=>góc BAC=góc DME
Chứng minh được tam giác ABC=tam giác MDE(c.g.c)
b)AEMC,ADMB là hình bình hành=>AM cắt CE tại trung điểm của mỗi đường,AM cắt BD tại trung điểm của mỗi đường
=>AM,BD,CE đồng quy(đpcm)
Bài 1:
a)Có góc EAC=90 độ+góc BAC=góc FAB
tam giác EAC=tam giác BAF do EA=AB(tam giác AEB vuông cân tại A)
AF=AC(tam giác AFC vuông cân tại A),góc EAB=góc BAF
=>EC=BF(đpcm)
b)Trên tia đối tia MA,lấy điểm N sao cho M là trung điểm của AN
=>AM=AN/2
Có M là trung điểm của BC=>ABNC là hình bình hành
=>NC=AB=AE,BN=AC=AF,góc BAC+góc ACN=180 độ(AB//NC)
Mà góc EAF+góc BAC=180 độ
=>góc EAF=góc ACN
tam giác EAF=tam giác NCA(do EA=NC,AF=CA,góc EAF=góc NCA)
=>góc NAC=góc EFA và AN=EF
Mà AM=AN/2=>AM=EF/2
Gọi H là giao của AM và EF
Có góc NAC+góc HAF=90.Mà góc NAC=góc EFA
=>góc HAF+góc HFA=90 độ=>góc AHF =90 độ
=>AM vuông góc với EF tại H
a) AE//MC,ME//AC=>AEMC là hình bình hành
=>ME=AC
CM tương tự có ADMB là hình bình hành=>AB=MD
gọi P,Q lần lượt là giao của ABvới ME và AC với MD
Có AP//MQ,AQ//MP=>APMQ là hình bình hành=>góc BAC=góc DME
Chứng minh được tam giác ABC=tam giác MDE(c.g.c)
b)AEMC,ADMB là hình bình hành=>AM cắt CE tại trung điểm của mỗi đường,AM cắt BD tại trung điểm của mỗi đường
=>AM,BD,CE đồng quy(đpcm)
Bài 1:
a)Có góc EAC=90 độ+góc BAC=góc FAB
tam giác EAC=tam giác BAF do EA=AB(tam giác AEB vuông cân tại A)
AF=AC(tam giác AFC vuông cân tại A),góc EAB=góc BAF
=>EC=BF(đpcm)
b)Trên tia đối tia MA,lấy điểm N sao cho M là trung điểm của AN
=>AM=AN/2
Có M là trung điểm của BC=>ABNC là hình bình hành
=>NC=AB=AE,BN=AC=AF,góc BAC+góc ACN=180 độ(AB//NC)
Mà góc EAF+góc BAC=180 độ
=>góc EAF=góc ACN
tam giác EAF=tam giác NCA(do EA=NC,AF=CA,góc EAF=góc NCA)
=>góc NAC=góc EFA và AN=EF
Mà AM=AN/2=>AM=EF/2
Gọi H là giao của AM và EF
Có góc NAC+góc HAF=90.Mà góc NAC=góc EFA
=>góc HAF+góc HFA=90 độ=>góc AHF =90 độ
=>AM vuông góc với EF tại H