K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2019

Xét tam giác QMC và tam giác NMB có:

BM=CN(giả thiết)

NM=NQ(GT)

BMN=QMC(đối đỉnh)

\(\Rightarrow\)2 tam giác = nhau

\(\Rightarrow\)QC=BN(2 cạnh tương ứng)

+)Ta có:N trung điểm AC

             M trung điểm BC

Nên áp dụng bài toàn phụ về đường trung bình(ko biết thì nhớ search)

\(\Rightarrow\)MN//AB,MN=AB/2

\(\Rightarrow\)MQ//AB,MQ=AB/2(MN=MQ)

\(\Rightarrow\)MQ//AB,MQ=AP(AP=AB/2)

Ta có :MQ//AP<MQ=AP

Nên áp dụng tính chất đoạn chắn (tự search dùm nếu ko bít)

\(\Rightarrow\)AM=PQ.

(Kết luận thì tự đi mà viết mỏi tay VCL!!!)

Để phòng tránh copy ,vui lòng k cho vũ văn đạt đầu tiên
 

18 tháng 4 2019

Câu b) tui đang nghĩ nha ! Chắc phải vài tiếng

16 tháng 4 2017

tk ủng hộ mk nha mọi người ai tk mk mk tk lại 3 tk

a: BC^2=AB^2+AC^2

=>ΔABC vuông tại A

b: MA=2,5cm

MB<AB

=>góc BAM<góc AMB

c: Xét tứ giác ABNC có

M là trung điểm chung của AN và BC

=>ABNC là hbh

mà góc BAC=90 độ

nên ABNC là hcn

=>CN vuông góc CA

a: Xét ΔABC có

AM,BE,CF là trung tuyến

AM,BE,CF cắt nhau tại G

=>G là trọng tâm

=>AG=2/3AM và BG=2/3BE và CG=2/3CF

=>AG=2GM=GD

=>G là trung điểm của AD

=>M là trung điểm của GD

Xét tứ giác BGCD có

M là trung điểm chung của BC và GD

=>BGCD là hbh

=>BG=CD và CG=BD

BG=2/3BE

=>BG<BE

CG=2/3CF

=>BD=2/3CF

=>BD<CF

GD=AG=2/3AM

=>GD<AM

=>Các cạnh của ΔBGD nhỏ hơn các trung tuyến của ΔABC

b: Gọi N,T lần lượt là BD,BG

Xét ΔDAB có DG/DA=DN/DB

nên GN//AB và GN=1/2AB

=>GN<AB

BM=1/2BC

=>BM<BC

T là trung điểm của BG

=>BT=1/2BG=GT=GE

=>G là trung điểm của TE

Xét tứ giác AEDT có

G là trung điểm chung của AD và ET

=>AEDT là hbh

=>DT=AE=1/2AC

=>Các trung tuyến của ΔBGD đều bằng một nửa các cạnh tương ứng của ΔABC

17 tháng 4 2022

A C B M N D

a, Áp dụng Đ. L. py-ta-go vào tg ABC cân tại A, có:

BC2=AC2+AB2

=>152=AC2+92

     225=AC2+81

=>AC=225-81

         =144.

=>AC=12cm.

b, Xét tg ABM và tg NCM, có: 

MB=MC(M là trung điển của BC)

góc AMB= góc CMN(đối đỉnh)

AM=NM(gt)

=>tg ABM= tg NCM(c. g. c)

=>góc ABM= góc NCM(2 góc tương ứng)

c, Ta có: góc BAC+ góc DAC=180o

                 =>góc DAC= 180o- góc BAC 

                                   =180o-90o

                                   =90o

Xét tg ACB và tg ACD, có: 

AB=AD(A là trung điểm của BC)

góc BAC = góc DAC(=90o)

AC chung

=>tg ABC= tg ADC(2 cạnh góc vuông)

=>BC=DC(2 cạnh tương ứng)

=>tg CBD cân tại C(đpcm)

21 tháng 8 2023

a) Để chứng minh AM vuông góc với BC, ta sử dụng tính chất của tam giác cân. Vì tam giác ABC cân tại A, nên ta có MA = MC. Vì M là trung điểm của BC, nên ta có MB = MC. Từ đó, ta có MA = MB. Giả sử ta kẻ đường thẳng AM. Vì MA = MB, nên đường thẳng AM là đường trung tuyến của tam giác ABC. Theo tính chất của đường trung tuyến, ta có AM song song và bằng một nửa đoạn thẳng BC. Do đó, AM vuông góc với BC. b) Vì tam giác ABC cân tại A, nên ta có góc BAC = góc BCA. Vì góc BAC = 40 độ, nên góc BCA = 40 độ. Vì tam giác ABC cân tại A, nên tổng hai góc B và góc C là 180 độ - góc BAC = 180 độ - 40 độ = 140 độ. Vì tam giác ABC là tam giác cân, nên góc B = góc C = (180 độ - 140 độ)/2 = 20 độ. Vậy góc B của tam giác ABC là 20 độ và góc C cũng là 20 độ. c) Để chứng minh AB // CD, ta sử dụng tính chất của đường trung tuyến. Vì N là trung điểm của đoạn thẳng BC, nên BN song song và bằng một nửa đoạn thẳng AC. Từ đó, ta có: BN = 1/2 AC. Giả sử ta kẻ đường thẳng CD. Vì NB = ND, nên ta có: 1/2 AC = NB = ND. Do đó, ta có AB // CD. Để chứng minh tam giác ACD cân, ta sử dụng tính chất của đường trung tuyến. Vì D là điểm trên đường trung tuyến BN, nên ta có: ND = 1/2 NB. Từ đó, ta có: ND = 1/2 NB = 1/2 AC. Vì NB = ND và AD là đoạn thẳng chứa đường trung tuyến BN, nên ta có: AD song song và bằng một nửa đoạn thẳng AC. Do đó, tam giác ACD cân. d) Để chứng minh BK = 1/3 BD, ta sử dụng tính chất của điểm giao nhau của hai đường trung tuyến. Vì K là giao điểm của AM và BN, nên ta có: AK = 2/3 AM và BK = 2/3 BN. Vì MA = MB (vì tam giác ABC cân tại A và M là trung điểm của BC), nên AM là đường trung tuyến của tam giác ABC. Từ đó, ta có: AM = 1/2 BC. Vì NB = ND (vì trên tia BN ta lấy điểm D sao cho NB = ND), nên BN cũng là đường trung tuyến của tam giác ABC. Từ đó, ta có: BN = 1/2 AC. Do đó, ta có: AM = 1/2 BC = 1/2 AC. Vì BN = 1/2 AC, nên ta có: BK = 2/3 BN = 2/3 * 1/2 AC = 1/3 AC. Vì AC = BD (vì tam giác ACD cân và D là điểm trên đường trung tuyến BN), nên ta có: BK = 1/3 BD. Vậy ta đã chứng minh BK = 1/3 BD.

a: ΔABC cân tại A có AM là đường trung tuyến

nên AM vuông góc BC

b: ΔABC cân tại A

=>\(\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-40^0}{2}=70^0\)

c: Xét tứ giác ABCD có

N là trung điểm chung của AC và BD

=>ABCD là hình bình hành

=>AB//CD và AB=CD

=>CD=CA

=>ΔCAD cân tại C