Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi Q là giao điểm của PF và AK ,I là giao điểm của PE và CL
Trong △ FPE ta có: PE//AK hay QM //PE
Suy ra: (định lí ta-lét) (1)
Trong △ ALO ta có:PF //CL hay FQ //LO
Suy ra: (định lí ta-lét) (2)
Trong △ ALC ta có: PF // CL
Suy ra: (định lí ta-lét) (3)
Từ (2) và (3) suy ra:
Vì LO = 1/3 CL (O giao điểm của hai đường trung tuyến) nên (4)
Từ (1) và (4) suy ra: ⇒ FM = 1/3 FE
Trong △ EPF ta có:PF // CL hay NI // PF
Suy ra: (định lí ta –lét) (5)
Trong △ CKO ta có: EI // OK
Suy ra: (định lí ta –lét) (6)
Trong △ CKA ta có:PE // AK
Suy ra: (định lí ta –lét) (7)
Từ (6) và (7) suy ra:
Vì OK = 1/3 AK (O là giao điểm của hai đường trung tuyến) nên (8)
Từ (5) và (8) suy ra: ⇒EN = 1/3 EF
Ta có: MN = EF - (EN + FM) = EF - (1/3 EF + 1/3 EF) = 1/3 EF
Vậy EN = MN = NF
Do DE // BC
\(\Rightarrow\)\(\frac{DE}{BC}\)=\(\frac{AD}{AB}\)(Hệ quả Ta lét)
Mà AD=BM (gt)
Suy ra : \(\frac{AD}{AB}\)=\(\frac{BM}{AB}\)
\(\Rightarrow\)\(\frac{DE}{BC}\)=\(\frac{BM}{AB}\)
\(\Rightarrow\)DE=\(\frac{BC.BM}{AB}\)
Xét \(\Delta ABC\)có MN//BC
\(\frac{MN}{BC}\)=\(\frac{AM}{AB}\)(Hệ quả Talét)
\(\Rightarrow\)MN=\(\frac{BC.AM}{AB}\)
Suy ra DE+MN=\(\frac{BC.BM}{AB}\)+ \(\frac{BC.AM}{AB}\)
\(\Rightarrow\)DE+MN=\(\frac{BC.AB}{AB}\)= BC
Mà BC là đường cố định không đổi
\(\Rightarrow\)DE+MN không đổi
Điểm M nằm giữa A và B nên: AB = AM + MB = 4 + 8 = 12cm
Áp dụng hệ quả định lí Ta let ta có;
Chọn đáp án C
* Cách vẽ:
- Kẻ tỉa Ax bất kì khác tia AB, AC
- Trên tia Ax, lấy hai điểm E và F sao cho AE = 2 (đơn vị dài), EF = 3 (đơn vị dài)
- Kẻ đường thẳng FB
- Từ E kẻ đường thẳng song song với FB Cắt AB tại M.
- Kẻ đường thẳng FC.
- Từ E kẻ đường thẳng song song với FC cắt AC tại N.
Ta có M, N là hai điểm cần vẽ.
* Chứng minh:
Trong △ ABC, ta có:
Suy ra: MN // BC (Theo định lí đảo của định lí Ta-lét)