K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Xét ΔABC vuông tại A có \(\sin B=\dfrac{AC}{BC}=\dfrac{4}{5}\)

nên \(\widehat{B}=53^0\)

=>\(\widehat{C}=37^0\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

hay AH=4,8(cm)

20 tháng 5 2019

bai-98-trang-122-sach-bai-tap-toan-9-tap-1-3.PNG (292×165)

a. Ta có: AB2 = 62 = 36

AC2 = 4,52 = 20,25

BC2 = 7,52 = 56,25

Vì AB2 + AC2 = 36 + 20,25 = 56,25 = BC2 nên tam giác ABC vuông tại A (theo định lí đảo Pi-ta-go)

Kẻ AH ⊥ BC

Ta có: AH.BC = AB.AC

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 b. Tam giác ABC và tam giác MBC có chung cạnh đáy BC, đồng thời SABC = SMBC nên khoảng cách từ M đến BC bằng khoảng cách từ A đến BC. Vậy M thay đổi cách BC một khoảng bằng AH nên M nằm trên hai đường thẳng x và y song song với BC cách BC một khoảng bằng AH.
20 tháng 6 2017

Hạ đường cao BH

Ta có:

\(S_{\Delta ABC}=\dfrac{1}{2}.BH.AC\)

\(=\dfrac{1}{2}.AB\)\(.\)\(\dfrac{BH}{AB}.AC\)

\(=\dfrac{1}{2}.AB.sin\left(\widehat{A}\right).AC\)( Điều phải chứng minh)

23 tháng 3 2020

A B C H

\(S_{\Delta ABC}=\frac{AH\cdot BC}{2}=\frac{6\cdot10}{2}=\frac{60}{2}=30\left(cm^2\right)\)

Vậy \(S_{\Delta ABC}=30cm^2\)

23 tháng 3 2020

Cảm ơn bạn đã trả lời câu hỏi. Nhưng bạn trả lời sai rồi

NV
23 tháng 8 2021

\(\dfrac{B}{C}=\dfrac{4}{3}\Rightarrow B=\dfrac{4C}{3}\)

\(B+C=180^0-A=105^0\Rightarrow C+\dfrac{4C}{3}=105^0\Rightarrow C=45^0\) \(\Rightarrow B=60^0\)

Kẻ đường cao AD ứng với BC (do 2 góc B và C đều nhọn nên D nằm giữa B và C)

Trong tam giác vuông ABD:

\(sinB=\dfrac{AD}{AB}\Rightarrow AD=AB.sinB=10,6.sin60^0\approx9,2\left(cm\right)\)

\(cosB=\dfrac{BD}{AB}\Rightarrow BD=AB.cosB=10,6.cos60^0=5,3\left(cm\right)\)

Trong tam giác vuông ACD:

\(tanC=\dfrac{AD}{CD}\Rightarrow CD=AD.tanC=9,2.tan45^0=9,2\left(cm\right)\)

\(sinC=\dfrac{AD}{AC}\Rightarrow AC=\dfrac{AD}{sinC}=\dfrac{9,2}{sin45^0}\approx13\left(cm\right)\)

\(BC=BD+CD=5,3+9,2=14,5\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}AD.BC=\dfrac{1}{2}.9,2.14,5=66,7\left(cm^2\right)\)

NV
23 tháng 8 2021

undefined

14 tháng 6 2019

A B C D E

\(\cos^2\widehat{A}=\frac{AE^2}{AC^2}=\frac{AD^2}{AB^2}\)

Xét tam giác ADE và tam giác ABC có : 

\(\frac{AD}{AB}=\frac{AE}{AC}\) \(\left(=\cos\widehat{A}\right)\)

\(\widehat{A}\) là góc chung 

Do đó : \(\Delta ADE~\Delta ABC\left(c-g-c\right)\)

Mà tỉ số diện tích của hai tam giác đồng dạng bằng bình phương tỉ số đồng dạng nên 

\(\frac{S_{ADE}}{S_{ABC}}=\left(\frac{AD}{AB}\right)^2=\left(\frac{AE}{AC}\right)^2=\cos^2\widehat{A}\)\(\Rightarrow\)\(S_{ADE}=S_{ABC}.\cos^2\widehat{A}\) ( đpcm ) 

làm tạm 1 câu :v 

14 tháng 6 2019

\(S_{ADE}+S_{BCDE}=S_{ABC}.1=S_{ABC}\left(\sin^2\widehat{A}+\cos^2\widehat{A}\right)\)

\(\Rightarrow\)\(S_{ADE}+S_{BCDE}=S_{ABC}.\sin^2\widehat{A}+S_{ABC}.\cos^2\widehat{A}\)

\(\Leftrightarrow\)\(S_{BCDE}=S_{ABC}.\sin^2\widehat{A}\) ( do \(S_{ADE}=S_{ABC}.\cos^2\widehat{A}\) )