K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a) Ta có: \(\frac{{A'B'}}{{AB}} = \frac{2}{6} = \frac{1}{3},\frac{{A'C'}}{{AC}} = \frac{3}{9} = \frac{1}{3},\frac{{B'C'}}{{BC}} = \frac{4}{{12}} = \frac{1}{3}\). Do đó, các tỉ số trên bằng nhau.

b) Ta có: \(\frac{{AM}}{{AB}} = \frac{2}{6} = \frac{1}{3};\frac{{AN}}{{AC}} = \frac{3}{9} = \frac{1}{3}\)

Vì \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} \Rightarrow MN//BC\) (định lí Thales đảo)

Vì \(MN//BC \Rightarrow \frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}}\) (Hệ quả của định lí Thales)

Do đó, \(\frac{{MN}}{{BC}} = \frac{1}{3} \Leftrightarrow \frac{{MN}}{{12}} = \frac{1}{3} \Rightarrow MN = \frac{{12.1}}{3} = 4\).

Vậy \(MN = 4cm\).

c) Vì \(MN//BC \Rightarrow \Delta ABC\backsim\Delta AMN\) (định lí)(1)

Xét tam giác \(AMN\) và tam giác \(A'B'C'\) ta có:

\(AM = A'B' = 2cm;AN = A'C' = 2cm;MN = B'C' = 4cm\)

Do đó, \(\Delta AMN = \Delta A'B'C'\) (c.c.c)

Vì  \(\Delta AMN = \Delta A'B'C'\) nên \(\Delta AMN\backsim\Delta A'B'C'\) (2)

Từ (1) và (2) suy ra, \(\Delta ABC\backsim\Delta A'B'C'\).

3 tháng 2 2021

Theo giả thiết ta có: \(A'B'=AB+3=5+3=8\left(cm\right)\).

Do \(\Delta ABC\) đồng dạng với \(\Delta A'B'C'\)

\(\Rightarrow\dfrac{AB}{A'B'}=\dfrac{AC}{A'C'}=\dfrac{BC}{B'C'}\)

\(\Rightarrow\dfrac{7}{A'C'}=\dfrac{9}{B'C'}=\dfrac{5}{8}\Rightarrow\left\{{}\begin{matrix}A'C'=\dfrac{7.8}{5}=\dfrac{56}{5}\left(cm\right)\\B'C'=\dfrac{9.8}{5}=\dfrac{72}{5}\left(cm\right)\end{matrix}\right.\).

a: Xét ΔA'B'C' và ΔABC có 

A'B'/AB=A'C'/AC=B'C'/BC

Do đó: ΔA'B'C'\(\sim\)ΔABC

b: \(\dfrac{C_{A'B'C'}}{C_{ABC}}=\dfrac{A'B'}{AB}=2\)

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Lời giải:

a) Ta thấy:

$\frac{4}{8}=\frac{5}{10}=\frac{6}{12}$ nên 2 tam giác đồng dạng theo TH c.c.c

b) Pitago: $A'C'=\sqrt{B'C'^2-A'B'^2}=\sqrt{16^2-9^2}=5\sqrt{7}$

Xét tam giác $ABC$ và $A'B'C'$ có:

$\widehat{A}=\widehat{A'}=90^0$

$\frac{AB}{AC}\neq \frac{A'B'}{A'C'}$

Do đó 2 tam giác không đồng dạng

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{A'B'}{3}=\dfrac{B'C'}{14}=\dfrac{C'A'}{13}=\dfrac{A'B'+B'C'+C'A'}{3+14+13}=\dfrac{90}{30}=3\)

Do đó: A'B'=9cm; B'C'=42cm; C'A'=39cm

31 tháng 3 2022

\(\dfrac{B'A}{B'C}=\dfrac{S_{AMB'}}{S_{CMB'}}=\dfrac{S_{ABB'}}{S_{CBB'}}=\dfrac{S_{ABB'}-S_{AMB'}}{S_{CBB'}-S_{CMB'}}=\dfrac{S_{ABM}}{S_{CBM}}\)

\(\dfrac{C'A}{C'B}=\dfrac{S_{AMC'}}{S_{BMC'}}=\dfrac{S_{ACC'}}{S_{BCC'}}=\dfrac{S_{ACC'}-S_{AMC'}}{S_{BCC'}-S_{BMC'}}=\dfrac{S_{ACM}}{S_{CBM}}\)

\(\dfrac{MA}{MA'}=\dfrac{S_{ABM}}{S_{A'BM}}=\dfrac{S_{ACM}}{S_{A'CM}}=\dfrac{S_{ABM}+S_{ACM}}{S_{A'BM}+S_{A'CM}}=\dfrac{S_{ABM}+S_{ACM}}{S_{MBC}}=\dfrac{S_{ABM}}{S_{MBC}}+\dfrac{S_{ACM}}{S_{MBC}}=\dfrac{B'A}{B'C}+\dfrac{C'A}{C'B}\)

ΔABC~ΔA'B'C'

=>\(\dfrac{AB}{A'B'}=\dfrac{AC}{A'C'}=\dfrac{BC}{B'C'}\)

=>\(\dfrac{AB}{9}=\dfrac{AC}{12}=\dfrac{BC}{15}\)

=>\(\dfrac{AB}{3}=\dfrac{AC}{4}=\dfrac{BC}{5}\)

=>AB là cạnh nhỏ nhất trong ΔABC

Theo đề, ta có: AB=3cm

=>\(\dfrac{AC}{4}=\dfrac{BC}{5}=\dfrac{3}{3}=1\)

=>\(AC=4\cdot1=4\left(cm\right);BC=5\cdot1=5\left(cm\right)\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{A'B'}{3}=\dfrac{B'C'}{14}=\dfrac{C'A'}{13}=\dfrac{A'B'+B'C'+C'A'}{3+14+13}=\dfrac{90}{30}=3\)

Do đó: A'B'=9cm; B'C'=42cm; C'A'=39cm