Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi PH và NF là 2 đường cao của \(\Delta\)BNP; CK và AE lần lượt là đường cao của \(\Delta\)CMP và \(\Delta\)AMN
Xét tứ giác BNMP có: BN // MP; MN // BP => Tứ giác BNMP là hình bình hành
=> MP = BN; MN = BP
Ta có: \(S_{CMP}=\frac{CK.MP}{2};S_{BNP}=\frac{PH.BN}{2}\Rightarrow\frac{S_{CMP}}{S_{BNP}}=\frac{CK}{PH}\)(Do MP = BN) (1)
MP // BN => ^MPC = ^NBC (Đồng vị) Hay ^KPC = ^HBP.
Xét \(\Delta\)CKP và \(\Delta\)PHB có: ^CKP = ^PHB (=900); ^KPC = ^HBP
=> \(\Delta\)CKP ~ \(\Delta\)PHB (g.g)\(\Rightarrow\frac{CK}{PH}=\frac{CP}{PB}\) (2)
Từ (1) và (2) => \(\frac{S_{CMP}}{S_{BNP}}=\frac{CP}{PB}\). Mà \(\frac{CP}{PB}=\frac{CM}{MA}\)(ĐL Thales) \(\Rightarrow\frac{S_{CMP}}{S_{BNP}}=\frac{CM}{MA}\)(*)
Tương tự: \(\frac{S_{BNP}}{S_{AMN}}=\frac{NF}{AE}\). \(\Delta\)AEN ~ \(\Delta\)NFB (g.g) => \(\frac{NF}{AE}=\frac{BN}{NA}\)
\(\Rightarrow\frac{S_{BNP}}{S_{AMN}}=\frac{BN}{NA}=\frac{CM}{MA}\)(ĐL Thales) (**)
Từ (*) và (**) suy ra \(\frac{S_{CMP}}{S_{BNP}}=\frac{S_{BNP}}{S_{AMN}}\Rightarrow\left(S_{BNP}\right)^2=S_{AMN}.S_{CMP}\) (đpcm).
a. Xét tam giác ABC có:
DE//BC (gt)
=>\(\dfrac{DA}{DB}=\dfrac{EA}{EC}\)(định lý Ta-let) (1)
Xét tam giác ADE có:
AD//CF (gt)
=>\(\dfrac{EA}{EC}=\dfrac{DE}{EF}\)(định lý Ta-let) (2)
Từ (1) và (2) suy ra:\(\dfrac{DA}{DB}=\dfrac{ED}{FE}\)