Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải thích các bước giải:
a.Ta có xy//BC,MD//AB��//��,��//��
→AD//BM,AB//DM→ˆBMA=ˆMAD,ˆBAM=ˆAMD→��//��,��//��→���^=���^,���^=���^
Mà ΔABM,ΔMDAΔ���,Δ��� chung cạnh AM��
→ΔABM=ΔMDA(g.c.g)→Δ���=Δ���(�.�.�)
→AD=BM,MD=AB→��=��,��=��
Tương tự chứng minh được AE=MC,ME=AC��=��,��=��
→DE=DA+AE=BM+MC=BC→��=��+��=��+��=��
→ΔABC=ΔMDE(c.c.c)→Δ���=Δ���(�.�.�)
b.Gọi AM∩BD=I��∩��=�
→ˆIAD=ˆIMB,ˆIDA=ˆIBM(AD//BM)→���^=���^,���^=���^(��//��)
Mà AD=BM��=��
→ΔIAD=ΔIMB(g.c.g)→Δ���=Δ���(�.�.�)
→IA=IM,IB=ID→��=��,��=��
Lại có AE//CM→ˆEAI=ˆIMC��//��→���^=���^
Kết hợp AE=CM��=��
→ΔIAE=ΔIMC(c.g.c)→Δ���=Δ���(�.�.�)
→ˆAIE=ˆMIC→���^=���^
→ˆEIC=ˆAIE+ˆAIC=ˆMIC+ˆAIC=ˆAIM=180o→���^=���^+���^=���^+���^=���^=180�
→E,I,C→�,�,� thẳng hàng
→CE,AM,BD→��,��,�� đồng quy
1)Các đường thẳng EM và MD cắt AB và AC lần lượt là K và H.
Kẻ đường thẳng EM,Ta có Vì EC//KM ta có HAMˆHAM^=AMEˆAME^(1)
Vì AB//MD=>KAMˆKAM^=AMDˆAMD^(2)
Mà BACˆBAC^=KAMˆKAM^+HAMˆHAM^(3)
tiếp KMDˆKMD^=KMAˆKMA^+AMDˆAMD^(4)
Từ (1),(2),(3) và (4)=>BACˆBAC^=EMDˆEMD^
Kẻ D với B.Xét tam giác ABD và tam giác MDB có:
DB là cạnh chung
MDBˆMDB^=DBAˆDBA^(vì MD//AB)
ADBˆADB^=DBMˆDBM^(vì xy//BC)
=>Tam giác ABD=Tam giác MDB(g.c.g)
=>DM=AB.
Kẻ E với C.Xét tam giác AEM và tam giác MCA có:
AM là cạnh chung
ACEˆACE^=CAMˆCAM^)(vì ME//AC)
EAMˆEAM^=AMCˆAMC^(vì xy//BC)
=>Tam giác AEM=Tam giác MCA(g.c.g)
=>ME=AC
Xét tam giác ABC và tam giác MDE có:
DM=AB(c/m trên)
ME=AC(c/m trên)
BACˆBAC^=EMDˆEMD^
=>Tam giác ABC=Tam giác MDE(c.g.c)
2)Thiếu điều kiện rồi.
Bài 6 mình sẽ bắt đầu bằng câu b nhé!
b)Vì MACˆMAC^+BAMˆBAM^=90o90o(gt)
Vì MACˆMAC^+CAEˆCAE^=90o90o(gt)
Từ trên=>CAEˆCAE^= BAMˆBAM^
Xét tam giác ABM và tam giác ACE có:
AB=BC(gt)
AM=AE(gt)
CAEˆCAE^= BAMˆBAM^(c/m trên)
=>Tam giác ABM=Tam giác ACE(c.g.c)
=>EC=BM(hai cạnh tương ứng)
c)Ta có: MABˆMAB^+MACˆMAC^=90o90o(gt)
Ta lại có tiếp: MABˆMAB^+BADˆBAD^=90o90o(gt)
=>BADˆBAD^=MACˆMAC^
Xét tam giác ADB và tam giác AMC có:
AB=AC(gt)
DA=AM(gt)
BADˆBAD^=MACˆMAC^(c/m trên)
=>Tam giác ADB=Tam giác AMC(c.g.c)
=>DB=MC(hai cạnh tương ứng)
Ta có BM+MC=BC(do M nằm giữa B và C)
Mà BM=EC(c/m trên)
DB=MC(c/m trên)
=>EC+DB=BC
d)Vì Tam giác ABM=Tam giác ACE(c/m trên)
=>ACEˆACE^=B^B^=45o45o(Vì góc B là góc ở đáy của tam giác vuông cân BAC tại A)
Vậy Ta có C^C^+ACEˆACE^=BCEˆBCE^=90o90o.(1)
Vì Tam giác ADB=Tam giác AMC(c/m trên)
=>C^C^=DBAˆDBA^=45o45o
Vậy B^B^+DBAˆDBA^=DBCˆDBC^=90o90o(2)
Từ (1) và (2)=>BCEˆBCE^= DBCˆDBC^=90o90o vậy BCEˆBCE^+DBCˆDBC^=180o180o mà hai góc này nằm ở vị trí trong cùng phía =>DB//EC
Tứ giác ADMB có: AB//MD, AD//MB
ADMB là hình bình hành AB=MD và ˆDAB=ˆDMBDAB^=DMB^
Tứ giác ACME có: AE//MC, AC//ME
ACME là hình bình hành \Rightarrow AC=ME
Vì xy//BC nên ˆDAC=ˆACBDAC^=ACB^
mà ˆACB=ˆEMBACB^=EMB^ nên ˆDAC=ˆEMBDAC^=EMB^
Ta có: ˆDAB=ˆDMBDAB^=DMB^
ˆDAB−ˆDAC=ˆDMB−ˆEMBDAB^−DAC^=DMB^−EMB^
hay ˆBAC=ˆDMEBAC^=DME^
Tam giác ABC=MDE (c.g.c)
a: Xét tứ giác BFED có
ED//BF
FE//BD
Do đó: BFED là hình bình hành
Xét ΔABC có
D là trung điểm của BC
DE//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
E là trung điểm của AC
EF//CB
Do đó: F là trung điểm của AB
Xét ΔCDE và ΔEFA có
CD=EF
DE=FA
CE=EA
Do đó: ΔCDE=ΔEFA
b: Gọi ΔABC có F là trung điểm của AB,E là trung điểm của AC
Trên tia FE lấy điểm E sao cho E là trung điểm của FK
Xét tứ giác AFCK có
E là trung điểm của AC
E là trung điểm của FK
Do đó: AFCK là hình bình hành
Suy ra: AF//KC và KC=AF
hay KC//FB và KC=FB
Xét tứ giác BFKC có
KC//FB
KC=FB
Do đó: BFKC là hình bình hành
Suy ra: FE//BC(ĐPCM)
Tứ giác ADMB có: AB//MD, AD//MB
ADMB là hình bình hành AB=MD và ˆDAB=ˆDMBDAB^=DMB^
Tứ giác ACME có: AE//MC, AC//ME
ACME là hình bình hành \Rightarrow AC=ME
Vì xy//BC nên ˆDAC=ˆACBDAC^=ACB^
mà ˆACB=ˆEMBACB^=EMB^ nên ˆDAC=ˆEMBDAC^=EMB^
Ta có: ˆDAB=ˆDMBDAB^=DMB^
ˆDAB−ˆDAC=ˆDMB−ˆEMBDAB^−DAC^=DMB^−EMB^
hay ˆBAC=ˆDMEBAC^=DME^
Tam giác ABC=MDE (c.g.c)
Ta có: xy//BC => AD//BM. Mà AB//DM => tứ giác ADMB là hình bình hành => AD=BM (2 cạnh đối nhau) (1)
xy//BC => AE//CM. Mà AC//EM => tứ giác AEMC là hình bình hành => AE=CM (2 cạnh đối nhau) (2)
Từ (1) và (2) => AD+AE=BM+CM hay DE=BC
Do xy//BC ⇒EDOˆ=CBOˆ;DEOˆ=BCOˆ⇒EDO^=CBO^;DEO^=BCO^
Ta dễ chứng minh ΔDOE=ΔBOC(g−c−g)⇒OD=OBΔDOE=ΔBOC(g−c−g)⇒OD=OB
Ta dễ chứng minh ΔAOD=ΔMOB(c−g−c)⇒AODˆ=MOBˆΔAOD=ΔMOB(c−g−c)⇒AOD^=MOB^
⇒AODˆ+DOMˆ=MOBˆ+DOMˆ⇒AODˆ+DOMˆ=1800⇒AOD^+DOM^=MOB^+DOM^⇒AOD^+DOM^=1800 (do O, B, D thẳng hàng) ⇒AOMˆ=1800⇒AOM^=1800
=> A,M,O thẳng hàng
Vậy A, M, O thẳng hàng