K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2021

a) \(BM=\dfrac{1}{2}BC=\dfrac{1}{2}.10=5\left(cm\right)\)

Tam giác ABM có MD là p/giác

\(\Rightarrow\dfrac{AD}{BD}=\dfrac{AM}{BM}=\dfrac{6}{5}\)

b) Tam giác AMC có ME là p/giác

\(\Rightarrow\dfrac{MC}{AM}=\dfrac{EC}{AE}\)

Mà: MC = BM (GT)

\(\Rightarrow\dfrac{BM}{AM}=\dfrac{EC}{AE}\)

c) Có: \(\dfrac{AD}{BD}=\dfrac{AM}{BM}\left(cmt\right)\) (1)

Tam giác AMC có ME là p/giác

\(\Rightarrow\dfrac{AE}{EC}=\dfrac{AM}{MC}\)

Mà: BM = MC (GT)

\(\Rightarrow\dfrac{AE}{EC}=\dfrac{AM}{BM}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\dfrac{AD}{BD}=\dfrac{AE}{EC}\)

=> DE // BC

a) Ta có: M là trung điểm của BC(gt)

nên \(MB=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)

Xét ΔAMB có MD là đường phân giác ứng với cạnh AB(Gt)

nên \(\dfrac{AD}{BD}=\dfrac{AM}{BM}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{AD}{BD}=\dfrac{6}{5}\)

a: AD/BD=AM/MB=6/5

b: AE/EC=AM/MC=6/5

=>AD/BD=AE/EC

=>DE//BC

c: Để DE là đường trung bình thì D là trung điểm của AB, E là trung điểm của AC
Xét ΔAMB có

MD vừa la trung tuyến, vừa là phân giác

=>ΔMAB cân tại M

=>MA=MB=MC=1/2BC

=>ΔABC vuông tại A

a: AD/BD=AM/MB=6/5

b: AE/EC=AM/MC=6/5

=>AD/BD=AE/EC

=>DE//BC

c: Để DE là đường trung bình thì D là trung điểm của AB, E là trung điểm của AC
Xét ΔAMB có

MD vừa la trung tuyến, vừa là phân giác

=>ΔMAB cân tại M

=>MA=MB=MC=1/2BC

=>ΔABC vuông tại A

12 tháng 3 2023

Bạn ơi mình thắc mắc phần c MD là đường trung tuyến vậy

 

30 tháng 11 2017

Vì DI = IE (cmt) nên MI là đường trung tuyến của tam giác MDE.

ΔMDE vuông (vì MD, ME là tia phân giác của góc kề bù) nên MI = DI = IE

Đặt DI = MI = x, ta có D I B M = A I A M (cmt) nên  x 15 = 10 − x 10

Từ đó x = 6 suy ra DE = 12cm

Đáp án: D

a: Xét ΔMAB có MD là phân giác

nên AD/DB=AM/MB=AM/MC

Xét ΔMAC ó ME là phân giác

nên AE/EC=AM/MC=AD/DB

=>ED//BC

b: Xét ΔMAB có MD là phân giác

nên AD/DB=AM/MB=5/3

=>AD/AB=5/8

Xét ΔABC có DE//BC

nên DE/BC=AD/AB

=>DE/6=5/8

=>DE=3,75cm

3 tháng 3 2018

Tam giác ABC có chu vi bằng 74cm, AC là cạnh lớn nhất. Đường phân giác của góc A chia cạnh BC thành hai đoạn tỉ lệ với 2:3; đường phân giác của góc C chia cạnh AB thành hai đoạn tỉ lệ với 4:5. Tính độ dài các cạnh của tam giác ABC. 

AB + BC + AC = 74 (*) 
Trong ∆ ABC phân giác AD → AB/AC = DB/DC = 2/3 (AC > AB) 
→ AB = 2/3 . AC (1) , tương tự với phân giác CE ta suy ra 
BC = 4/5 . AC (2) . Thế tất cả vào (*) ta được: 
2/3 . AC + 4/5 . AC + AC = 74 → 37AC/15 = 74 → AC = 30cm 
thế vào (1) và (2) ta được AB = 10cm, BC = 24cm