K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2017

Xét tam giác ABC và tam giác DMC có:

CA=CD(gt)

góc ACB = góc DCM (2 góc đối đỉnh)

BC=CM(gt)

=> Tam giác ABC = tam giác DMC (c.g.c)

b) Có tam giác ABC = tam giác DMC ( chứng minh trên )

=> góc BAC = góc MDC (2 góc tương ứng)

=> MD song song với AB ( 2 góc so le trong bằng nhau )

c) Xét tam giác IBC và tam giác NCM có :

góc ABC = góc DMC ( tam giác ABC = tam giác DMC )

BC=MC ( gt )

góc ICB= góc NCM ( 2 góc đối đỉnh )

=> tam giác IBC= tam giác NCM (g.c.g)

=> IB=MN ( 2 cạnh tương ứng )

Mà AB=MD ( tam giác ABC= tam giác DMC )

=> AB-IB=MD-MN

=> AI=MD(đpcm)

24 tháng 12 2018

hay lắm

18 tháng 1 2022

Answer:

A M N D B I O

a. Xét tam giác ABC và tam giác DMC

CA = CD

CB = CM

Góc ACB = góc DCM

=> Tam giác ABC = tam giác DMC (c.g.c)

b. Từ chứng minh ở phần a) => Góc ABC = góc CDM hay góc BAD = góc ADM

Mà  hai góc ở vị trí so le trong

=> AB//MB

c. bạn thông cảm, ý này mình không biết làm ^^.

15 tháng 7 2016

a) xét tam giác ABC và tam giác DMC có:

CA=CD

góc ACB= góc DCM ( đối đỉnh)

BC=CM

=> tam giác ABC=tam giác DMC (c.g.c)

b) theo a) tam giác ABC=tam giác DMC=> góc A= góc D

mà đây là 2 góc so le trong nên MD//AB

c) Xét tam giác ICB và tam giác NCM có:

góc B= góc M ( tam giác ABC= tam giác DMC)

BC=MC

góc ICB= góc NCM ( đối đỉnh)

=> tam giác ICB= tam giác NCM(  g.c.g)

=> IB=MN

Mà AB=MD ( tam giác ABC= tam giác DMC)

=> AB-IB= MD-MN

=> AI=ND

14 tháng 12 2019

Cảm ơn bạn Hằng Lê Nguyệt

8 tháng 12 2019

#Tự vẽ hình nhé bạn#k mình nha#Thanks#

a ) Xét \(\Delta\)ABC và \(\Delta\)DMC có :

  • AC = CD ( giả thiết )
  • BC = CM ( giả thiết )
  • Góc BCA = Góc MCD ( đối đỉnh )

\(\Rightarrow\)\(\Delta\)ABC = \(\Delta\)DMC ( c - g - c )

b ) Ta có : \(\Delta\)ABC = \(\Delta\)DMC ( chứng minh trên )

\(\Rightarrow\)\(BÂC\) = Góc MDC ( 2 góc tương ứng )

Mà 2 góc này ở vị trí so le trong nên\(AB // MD\)

c ) Xét \(\Delta\)IAC và \(\Delta\) NDCcó :

  • Góc ICA = Góc NCD ( đối đỉnh )
  • AC = CD ( giả thiết )
  • BÂC = Góc CDN ( chứng minh trên )

\(\Rightarrow\)\(\Delta\)IAC = \(\Delta\)NDC ( g - c - g )

\(\Rightarrow\)IA = ND ( 2 cạnh tương ứng )

Ta có :  IB + AI = AB nên IB = AB - AI

Ta lại có : MN + ND = MD nên MN = MD - ND 

Mà AB = MD và AI = ND

\(\Rightarrow\)IB = MN

11 tháng 5 2020

C A B M D I N

Xét tg ACB và tg DCM có :

MCD^ = BCA^ ( đối đỉnh )

AC = DC ( gt )

BC = MC ( gt )

=> tg ACB = tg DMC ( c-g-c )

Từ trên ta có : CMD^ = CBA^ ( góc tương ứng )

Do 2 góc này bằng nhau và ở vị trí sole trong 

Nên MD // AB 

Xét tg CIB và tg CNM có :

ICB^ = NCM^ ( đối đỉnh )

CB = CM ( gt )

CBI^ = CMN^ (cmt)

=> tg CIB = tg CNM ( g-c-g )

=> IB = NM ( cạnh tương ứng ) (1)

Ta có : MN = AB ( cmt ) (2)

Mà do ND = MD - MN (3)

AI = AB - BI (4)

Từ 1 ; 2 ; 3 và 4 => ND = AI  

13 tháng 1 2021

a) Xét tam giác ABC và tam giác DMC , ta có :

CB = CM ( gt )

Góc ACB = góc DCM ( hai góc đối đỉnh )

CA = CD ( gt )

=> Tam giác ABC = tam giác DCM ( c.g.c )

b) Ta có : Tam giác ABC = tam giác DCM ( Theo phần a )

=> Góc ABC = góc DCM ( hai góc tương ứng )

Mà hai góc này ở vị trí so le trong => AB song song MD ( đpcm )