Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn vào Link này xem thử nhé :
Cho tam giác đều ABC. Trên tia đối tia AB lấy điểm D và trên tia đối tia AC lấy điểm E sao cho AD = AE. Gọi M,N,P,Q lần lượt là trung điểm của các đoạn thẳng BE,AD,AC,ABa) Chứng minh rằng tứ giác BCDE là hình thang cânb) Chứng minh rằng tứ giác CNEQ là hình thangc) Tam giác MNP là tam giác đề - Tìm với Google
Hok tốt
# EllyNguyen #
a) Vì O lầ điểm cách đều 3 cạnh của \(\Delta ABC\) nên:
+) \(OD=OE=OF\)
+) \(AO\), \(BO\) và \(CO\) là 3 đường phân giác của \(\Delta ABC\)
Xét \(\Delta BFO\) và \(\Delta BDO\) có:
\(\widehat{BFO}\)=\(\widehat{BDO}\)=90o
\(BO\) chung
\(OF=OD\) (CMT)
\(\Rightarrow\Delta BFO=\Delta BDO\) (ch-cgv)
\(\Rightarrow BF=BD\)
\(\Rightarrow\Delta BFD\) cân tại \(B\)
\(\Rightarrow\widehat{BFD}\)=\(\widehat{BDF}\)= ( \(180^o\)- \(\widehat{FBD}\)) : 2 \(\left(1\right)\)
Vì \(BA=BM\) (gt) nên \(\Delta BAM\) cân tại \(B\)
\(\Rightarrow\widehat{BAM}\)=\(\widehat{BMA}\)= (\(180^o\)-\(\widehat{ABM}\)) : 2 \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\widehat{BFD}\)=\(\widehat{BAM}\) mà chúng ở vị trí đồng vị nên \(DF\)//\(AM\)
\(\Rightarrow\) Tứ giác \(AFDM\) là hình thang \(\left(3\right)\)
Từ \(\left(2\right)\) và \(\left(3\right)\) \(\Rightarrow\) \(AFDM\) là hình thang cân
\(\Rightarrow\) \(MF=AD\) \(\left(4\right)\)
CM tương tự ta được: \(AEDN\) là hình thang cân
\(\Rightarrow\) \(NE=AD\) \(\left(5\right)\)
Từ \(\left(4\right)\) và \(\left(5\right)\) \(\Rightarrow MF=NE\)
b) Xét \(\Delta ODM\) và \(\Delta OFA\) có:
\(OD=OF\) (CMT)
\(\widehat{ODM}\)=\(\widehat{OFA}\)=\(90^o\)
\(OM=FA\) (\(AFDM\) là hình thang cân)
\(\Rightarrow\Delta ODM=\Delta OFA\) (c.g.c)
\(\Rightarrow OM=OA\left(6\right)\)
CM tương tự ta được \(\Delta ODN=\Delta OEA\) (c.g.c)
\(\Rightarrow\)\(ON=OA\) \(\left(7\right)\)
Từ \(\left(6\right)\) và \(\left(7\right)\) \(\Rightarrow OM=ON\)
\(\Rightarrow\) \(\Delta MON\) cân tại \(O\)
Mình biết bài này là từ 2019 rồi nhưng mà đề này mình thấy chưa ai làm nên mình làm để có bạn nào tìm thì sẽ có để tham khảo.
vâng baayh là 2022 r nhưng e vẫn tìm câu trl của tiền bối ạ :33
1,Cho tam giác ABC gọi G là trọng tâm.Đường thẳng d không cắt tam giác ABC.Gọi A',B',C',G' lần lượt là hình chiếu của A,B,C,G trên đường thẳng d.Chứng minh rằng GG'=(AA'+BB'+CC')/3
bạn dúp mình giải đc ko
Bạn kham khảo nha:
Cho tam giác đều ABC. Trên tia đối tia AB lấy điểm D và ... - Online Math