Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi M là trung điểm BC ; N là điểm đối xứng với H qua M.
M là trung điểm của BC và HN nên BNCH là hình bình hành
\(\Rightarrow NC//BH\)
Mà \(BH\perp AC\Rightarrow NC\perp AC\)hay AN là đường kính của đường tròn ( O )
Dễ thấy OM là đường trung bình \(\Delta AHN\) suy ra \(OM=\frac{1}{2}AH\)
M là trung điểm BC nên OM \(\perp\)BC
Xét \(\Delta AHG\)và \(\Delta OGM\)có :
\(\widehat{HAG}=\widehat{GMO}\); \(\frac{GM}{GA}=\frac{OM}{HA}=\frac{1}{2}\)
\(\Rightarrow\Delta AGH~\Delta MOG\left(c.g.c\right)\Rightarrow\widehat{AGH}=\widehat{MGO}\)hay H,G,O thẳng hàng
gọi E,F,T lần lượt là trung điểm của AB,CD,BD
Đường thẳng ME cắt NF tại S
Vì AC = BD \(\Rightarrow EQFP\)là hình thoi \(\Rightarrow EF\perp PQ\)( 1 )
Xét \(\Delta TPQ\)và \(\Delta SEF\)có : \(ME\perp AB,TP//AB\)
Tương tự , \(NF\perp CD;\)\(TQ//CD\)
\(\Rightarrow\Delta TPQ~\Delta SEF\)( Góc có cạnh tương ứng vuông góc )
\(\Rightarrow\frac{SE}{SF}=\frac{TP}{TQ}=\frac{AB}{CD}\)
Mặt khác : \(\Delta MAB~\Delta NCD\Rightarrow\frac{AB}{CD}=\frac{ME}{NF}\)( tỉ số đường cao = tỉ số đồng dạng )
Suy ra : \(\frac{ME}{NF}=\frac{SE}{SF}\)\(\Rightarrow EF//MN\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(MN\perp PQ\)
-Gọi D là trung điểm BC, trên đoạn BC lấy điểm E sao cho \(BM=CE\).
-AE cắt NP tại F, MF cắt AD tại G.
\(MC=3MB;MC+MB=BC\Rightarrow MB=\dfrac{1}{4}BC\Rightarrow CE=\dfrac{1}{4}BC\)
\(NA=3NC;NA+NC=AC\Rightarrow NA=\dfrac{1}{4}AC\)
-△ABC có: \(\dfrac{CE}{BC}=\dfrac{AN}{AC}=\dfrac{1}{4}\Rightarrow\)NE//AB (định lí Ta-let đảo)
\(\Rightarrow\dfrac{NE}{AB}=\dfrac{CE}{BC}=\dfrac{1}{4}\)mà \(\dfrac{AP}{BC}=\dfrac{1}{4}\Rightarrow NE=AP\)
-Tứ giác ANEP có: \(NE=AP\), NE//AP.
\(\Rightarrow\)ANEP là hình bình hành \(\Rightarrow\)F là trung điểm của AE và PN.
-Có: \(BD=CD;BM=CE\Rightarrow BD-BM=CD-CE\Rightarrow MD=ED\Rightarrow\)D là trung điểm ME.
-△AME có: Trung tuyến AD cắt trung tuyến MF tại G.
\(\Rightarrow\)G là trọng tâm của △AME \(\Rightarrow\dfrac{AG}{AD}=\dfrac{2}{3};\dfrac{MG}{MF}=\dfrac{2}{3}\)
-△ABC có: AD trung tuyến, G thuộc AB, \(\dfrac{AG}{AD}=\dfrac{2}{3}\)
\(\Rightarrow\)G là trọng tâm △ABC (1).
-△MNP có: MF trung tuyến, G thuộc MF, \(\dfrac{MG}{MF}=\dfrac{2}{3}\)
\(\Rightarrow\)G là trọng tâm △MNP (2).
-Từ (1) và (2) ta suy ra đpcm.