Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí cosin, ta có:
\(\begin{array}{l}{a^2} = {b^2} + {c^2} - 2bc.\cos A\\ \Leftrightarrow {a^2} = {8^2} + {5^2} - 2.8.5.\cos {120^ \circ } = 129\\ \Rightarrow a = \sqrt {129} \end{array}\)
Áp dụng định lí sin, ta có:
\(\begin{array}{l}\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} \Rightarrow \frac{{\sqrt {129} }}{{\sin {{120}^ \circ }}} = \frac{8}{{\sin B}} = \frac{5}{{\sin C}}\\ \Rightarrow \left\{ \begin{array}{l}\sin B = \frac{{8.\sin {{120}^ \circ }}}{{\sqrt {129} }} \approx 0,61\\\sin C = \frac{{5.\sin {{120}^ \circ }}}{{\sqrt {129} }} \approx 0,38\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\widehat B \approx 37,{59^ \circ }\\\widehat C \approx 22,{41^ \circ }\end{array} \right.\end{array}\)
b) Diện tích tam giác ABC là: \(S = \frac{1}{2}bc.\sin A = \frac{1}{2}.8.5.\sin {120^ \circ } = 10\sqrt 3 \)
c)
+) Theo định lí sin, ta có: \(R = \frac{a}{{2\sin A}} = \frac{{\sqrt {129} }}{{2\sin {{120}^ \circ }}} = \sqrt {43} \)
+) Đường cao AH của tam giác bằng: \(AH = \frac{{2S}}{a} = \frac{{2.10\sqrt 3 }}{{\sqrt {129} }} = \frac{{20\sqrt {43} }}{{43}}\)
a,Vuông tại A mới đúng
\(AB=2\sqrt{10};AC=\sqrt{10};BC=5\sqrt{2}\)
\(\Rightarrow AB^2+AC^2=40+10=50=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A
b, \(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC.sinA=\dfrac{1}{2}.2\sqrt{10}.\sqrt{10}.sin90^o=10\)
c, \(D\left(0;y_0\right)\)
\(A;C;D\) thẳng hàng \(\Leftrightarrow\overrightarrow{AC}=k.\overrightarrow{AD}\)
\(\Leftrightarrow\left\{{}\begin{matrix}3=k\\-1=k\left(y_0-4\right)\end{matrix}\right.\Rightarrow y_0=\dfrac{11}{3}\)
\(\Rightarrow D\left(0;\dfrac{11}{3}\right)\)
a) `\vec(BC) (1;2) = \vecv => \vecn (2;-1)`
Đường thẳng `BC` có: `\vecn (2;-1); B(1;3)`
`=>` PT của `d\ : 2(x-1)-1(y-3)=0<=>2x-y+1=0`
b) `|BC| = \sqrt((2-1)^2+(5-3)^2) = \sqrt5`
`|AB|=\sqrt5`
`|AC|=4`
a2 = b2 + c2 - 2bc.cos1200
⇔ a2 = 76
⇔ a = \(2\sqrt{19}\)
Theo định lí sin: \(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\)
⇔ \(\dfrac{2\sqrt{19}}{sin120}=\dfrac{6}{sinB}=\dfrac{4}{sinC}\)
⇔ \(\left\{{}\begin{matrix}sinC=\dfrac{\sqrt{57}}{19}\\sinB=\dfrac{3\sqrt{57}}{38}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\widehat{B}=36^035'\\\widehat{C}=23^025'\end{matrix}\right.\)
\(\widehat{B}=180^o-\left(40^o+120^o\right)=20^o\).
\(AH=AB.sinB=35.sin20^o\cong12cm.\)
\(\widehat{HCA}=180^o-120^o=60^o\).
\(AH=AC.sin60^o\Rightarrow AC=\dfrac{AH}{sin60}=\dfrac{12}{\dfrac{\sqrt{3}}{2}}=8\sqrt{3}\).
Áp dụng định lý Cô-sin:
\(BC=\sqrt{AB^2+AC^2-2.AB.AC.sinA}\)\(=\sqrt{35^2+\left(8\sqrt{3}\right)^2-2.35.8\sqrt{3}.cos40^o}\cong26cm\).
Vậy \(a=26cm;b=8\sqrt{3}cm,\)\(\widehat{B}=20^o\).
\(\overrightarrow{BC}=\left(-5;7\right)\Rightarrow\) đường thẳng BC nhận (7;5) là 1 vtpt
Phương trình tổng quát của BC (đi qua B) có dạng:
\(7\left(x-6\right)+5\left(y+2\right)=0\Leftrightarrow7x+5y-32=0\)
b.
Gọi H là chân đường cao ứng với BC
\(\Rightarrow AH=d\left(A;BC\right)=\dfrac{\left|7.0+5.4-32\right|}{\sqrt{7^2+5^2}}=\dfrac{6\sqrt{74}}{37}\)
\(BC=\sqrt{\left(-5\right)^2+7^2}=\sqrt{74}\)
\(S_{ABC}=\dfrac{1}{2}AH.BC=6\)
Diện tích tam giác ABC là:
\(S_{ABC}=\dfrac{1}{2}\cdot BA\cdot BC\cdot sinABC\)
\(=\dfrac{1}{2}\cdot5\cdot7\cdot sin120=\dfrac{35\sqrt{3}}{4}\)
Xét ΔABC có \(cosB=\dfrac{BA^2+BC^2-AC^2}{2\cdot BA\cdot BC}\)
=>\(\dfrac{5^2+7^2-AC^2}{2\cdot5\cdot7}=cos120=\dfrac{-1}{2}\)
=>\(25+49-AC^2=-35\)
=>\(AC^2=25+49+35=109\)
=>\(AC=\sqrt{109}\)
Kẻ AH\(\perp\)BC
=>\(h_A=AH\)
\(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\)
=>\(\dfrac{1}{2}\cdot AH\cdot7=\dfrac{35\sqrt{3}}{4}\)
=>\(AH\cdot3,5=\dfrac{35\sqrt{3}}{4}\)
=>\(AH=\dfrac{10\sqrt{3}}{4}=\dfrac{5}{2}\sqrt{3}\)
Xét ΔABC có \(\dfrac{AC}{sinB}=2R\)
=>\(2R=\dfrac{\sqrt{109}}{sin120}=\sqrt{109}\cdot\dfrac{2}{\sqrt{3}}\)
=>\(R=\sqrt{\dfrac{109}{3}}=\dfrac{\sqrt{327}}{3}\)
Ta có A B → , B C → = 180 0 − A B C ^ B C → , C A → = 180 0 − B C A ^ C A → , A B → = 180 0 − C A B ^
⇒ A B → , B C → + B C → , C A → + C A → , A B → = 540 0 − A B C ^ + B C A ^ + C A B ^ = 540 0 − 180 0 = 360 0 .
Chọn B.