K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2017

Bài 1: (bạn tự vẽ hình vì hình cũng dễ)

Ta có: AB = AH + BH = 1 + 4 = 5 (cm)

Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)

Xét tam giác BCH vuông tại H có:

  \(HB^2+CH^2=BC^2\left(pytago\right)\)

  \(4^2+CH^2=5^2\)

  \(16+CH^2=25\)

\(\Rightarrow CH^2=25-16=9\)

\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)

Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé

23 tháng 1 2017

Bài 2: Sử dụng pytago với tam giác ABH => AH

Sử dụng pytago với ACH => AC

7 tháng 4 2018

\(\frac{AB}{AC}=\frac{5}{2}=>AB=\frac{5}{2}AC\)

Áp dụng định lí Pi-ta-go vào tam giác ABC vuông tại A ta có :

   \(AB^2+AC^2=BC^2\)

=> \(AB^2+AC^2=26^2(1)\)

Thay \(AB=\frac{5}{2}AC\)vào \((1)\)ta được :

\((\frac{5}{2}AC)^2+AC^2=26^2\Rightarrow\frac{25}{4}AC^2+AC^2=676\)

\(=>\frac{29}{4}AC^2=676=>AC^2\approx93,2=>AC\approx9,7\)

7 tháng 4 2018

đề bài có j đó hơi sai sai

11 tháng 5 2016

\(\frac{AB}{AC}=\frac{5}{2}\Rightarrow AB=\frac{5}{2}AC\)

Áp dụng định lí pytago vào tam giác ABC vuông tại A ta có:

\(AB^2+AC^2=BC^2\)

=>AB2+AC2=262 (1)

Thay \(AB=\frac{5}{2}AC\) vào (1) ta được:

\(\left(\frac{5}{2}AC\right)^2+AC^2=26^2\Rightarrow\frac{25}{4}AC^2+AC^2=676\)

=>\(\frac{29}{4}AC^2=676\Rightarrow AC^2\approx93,2\Rightarrow AC\approx9,7\)

11 tháng 5 2016

Sửa 

\(\frac{AB}{AC}=\frac{5}{2}\Rightarrow AB=\frac{5}{2}AC\)

Áp dụng định lí pytago vào tam giác ABC vuông tai A ta có:

\(AB^2+AC^2=BC^2\Rightarrow\frac{25}{4}AC^2+AC^2=26^2\Rightarrow\frac{29}{4}AC^2=676\Rightarrow AC^2\approx93,2\)

\(\Rightarrow AC\approx9,7\left(cm\right)\)

=>\(AB=\frac{5}{2}AC=\frac{5}{2}.9,7=24,25\left(cm\right)\)

LM
Lê Minh Vũ
CTVHS VIP
13 tháng 5 2021

ABAC=52⇒AB=52ACABAC=52⇒AB=52AC

Áp dụng định lí pytago vào tam giác ABC vuông tại A ta có:

AB2+AC2=BC2AB2+AC2=BC2

=>AB2+AC2=262 (1)

Thay AB=52ACAB=52AC vào (1) ta được:

(52AC)2+AC2=262⇒254AC2+AC2=676(52AC)2+AC2=262⇒254AC2+AC2=676

=>294AC2=676⇒AC2≈93,2⇒AC≈9,7

13 tháng 5 2021

AB/AC = 5/2 ⇒ AB = 5/2AC

Áp dụng định lí pytago vào tam giác ABC vuông tai A ta có:

\(AB^2+AC^2=BC^2\) \(\Rightarrow\frac{25}{4}AC^2+AC^2=26^2\) \(\Rightarrow\frac{29}{4}AC^2=676\) \(\Rightarrow AC^2\approx93,2\left(cm\right)\)

⇒ AC ≈ 9,7(cm)

=> AB = 5/2 AC = 5/2 . 9,7 = 24,25(cm)

26 tháng 10 2021

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AC}{2}=\dfrac{AB}{3}=\dfrac{AB+AC}{2+3}=\dfrac{10}{5}=2\)

Do đó: AC=4cm; AB=6cm

AB=MN=6cm

AC=MP=4cm

BC=NP=9cm

1.Cho tam giác ABC ,A=90.Biết AB+AC=49cm,AB-AC=7cm.Tính cạnh BC .2.Cho tam giác cân ABC, AB=AC=17cm.Kẻ BDvuôngAC.Tính cạnh đáy BC, biết BD=15cm.3. Tính cạnh đáy BC của  tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần:AH=8cm,HC=3cm.4. Một tam giác vuông có cạnh huyền là 102 cm, các cạnh góc vuông tỉ lệ với 8:5. Tính các cạnh của tam giác vuông đó.5. Cho tam giác ABC, biết...
Đọc tiếp

1.Cho tam giác ABC ,A=90.Biết AB+AC=49cm,AB-AC=7cm.Tính cạnh BC .

2.Cho tam giác cân ABC, AB=AC=17cm.Kẻ BDvuôngAC.Tính cạnh đáy BC, biết BD=15cm.

3. Tính cạnh đáy BC của  tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần:AH=8cm,HC=3cm.

4. Một tam giác vuông có cạnh huyền là 102 cm, các cạnh góc vuông tỉ lệ với 8:5. Tính các cạnh của tam giác vuông đó.

5. Cho tam giác ABC, biết BC bằng 52cm, AB = 20cm ,AC=48 cm.

a, Chứng minh tam giác ABC vuông ở A;

b, Kẻ AH vuông góc với BC. Tính AH .

6. Cho tam giác vuông cân ABC, A=90.Qua A kẻ đường thẳng d tùy ý. Từ B và C kẻ BH vuông d. Chứng minh rằng tổng BH^2+CK^2 ko phụ thuộc vào vị trí của đường thẳng d. 

7. Cho tam giác vuông ABC ,A= 90 độ. Trên nửa mặt phẳng bờ AC không chứa điểm B, kẻ tia CX sao cho CA là tia phân giác của gócBCx.Từ A kẻ AE vuông Có, từ B kẻ BD vuông AE. Gọi AH là đường cao của tam giác ABC. Chứng minh rằng :

a, A là trung điểm của DE 

b, DHE=90 độ 

8. Cho tam giác ABC có A bằng 90 độ,AB=8 cm,BC =17cm.Trên nửa mặt phẳng bờ AC ko chứa điểm B, vẽ tia CD vuông với AC và CD=36cm.Tính tổng độ dài các đoạn thẳngAB+BC+CD+DA. 

4

Bài 1:

A C B

Độ dài cạnh AB: ( 49 + 7 ) : 2 = 28 (cm)

Độ dài cạnh AC: 28 - 7 = 21 (cm)

Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:

\(BC^2=AC^2+AB^2\)

Hay \(BC^2=21^2+28^2\)

\(\Rightarrow BC^2=441+784\)

\(\Rightarrow BC^2=1225\)

\(\Rightarrow BC=35\left(cm\right)\)

Bài 2:

A B C D

Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại D có:

\(AB^2=AD^2+BD^2\)

\(\Rightarrow AD^2=AB^2-BD^2\)

Hay \(AD^2=17^2-15^2\)

\(\Rightarrow AD^2=289-225\)

\(\Rightarrow AD^2=64\)

\(\Rightarrow AD=8\left(cm\right)\)

Trong tam giác ABC có:

\(AD+DC=AC\)

\(\Rightarrow DC=AC-AD=17-8=9\left(cm\right)\)

Áp dụng định lý Py-ta-go vào tam giác BCD vuông tại D có:

\(BC^2=BD^2+DC^2\)

Hay \(BC^2=15^2+9^2\)

\(\Rightarrow BC^2=225+81\)

\(\Rightarrow BC^2=306\)

\(\Rightarrow BC=\sqrt{306}\approx17,5\left(cm\right)\)