Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
\(\frac{AB}{AC}=\frac{5}{2}=>AB=\frac{5}{2}AC\)
Áp dụng định lí Pi-ta-go vào tam giác ABC vuông tại A ta có :
\(AB^2+AC^2=BC^2\)
=> \(AB^2+AC^2=26^2(1)\)
Thay \(AB=\frac{5}{2}AC\)vào \((1)\)ta được :
\((\frac{5}{2}AC)^2+AC^2=26^2\Rightarrow\frac{25}{4}AC^2+AC^2=676\)
\(=>\frac{29}{4}AC^2=676=>AC^2\approx93,2=>AC\approx9,7\)
\(\frac{AB}{AC}=\frac{5}{2}\Rightarrow AB=\frac{5}{2}AC\)
Áp dụng định lí pytago vào tam giác ABC vuông tại A ta có:
\(AB^2+AC^2=BC^2\)
=>AB2+AC2=262 (1)
Thay \(AB=\frac{5}{2}AC\) vào (1) ta được:
\(\left(\frac{5}{2}AC\right)^2+AC^2=26^2\Rightarrow\frac{25}{4}AC^2+AC^2=676\)
=>\(\frac{29}{4}AC^2=676\Rightarrow AC^2\approx93,2\Rightarrow AC\approx9,7\)
Sửa
\(\frac{AB}{AC}=\frac{5}{2}\Rightarrow AB=\frac{5}{2}AC\)
Áp dụng định lí pytago vào tam giác ABC vuông tai A ta có:
\(AB^2+AC^2=BC^2\Rightarrow\frac{25}{4}AC^2+AC^2=26^2\Rightarrow\frac{29}{4}AC^2=676\Rightarrow AC^2\approx93,2\)
\(\Rightarrow AC\approx9,7\left(cm\right)\)
=>\(AB=\frac{5}{2}AC=\frac{5}{2}.9,7=24,25\left(cm\right)\)
ABAC=52⇒AB=52ACABAC=52⇒AB=52AC
Áp dụng định lí pytago vào tam giác ABC vuông tại A ta có:
AB2+AC2=BC2AB2+AC2=BC2
=>AB2+AC2=262 (1)
Thay AB=52ACAB=52AC vào (1) ta được:
(52AC)2+AC2=262⇒254AC2+AC2=676(52AC)2+AC2=262⇒254AC2+AC2=676
=>294AC2=676⇒AC2≈93,2⇒AC≈9,7
AB/AC = 5/2 ⇒ AB = 5/2AC
Áp dụng định lí pytago vào tam giác ABC vuông tai A ta có:
\(AB^2+AC^2=BC^2\) \(\Rightarrow\frac{25}{4}AC^2+AC^2=26^2\) \(\Rightarrow\frac{29}{4}AC^2=676\) \(\Rightarrow AC^2\approx93,2\left(cm\right)\)
⇒ AC ≈ 9,7(cm)
=> AB = 5/2 AC = 5/2 . 9,7 = 24,25(cm)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AC}{2}=\dfrac{AB}{3}=\dfrac{AB+AC}{2+3}=\dfrac{10}{5}=2\)
Do đó: AC=4cm; AB=6cm
AB=MN=6cm
AC=MP=4cm
BC=NP=9cm
Bài 1:
Độ dài cạnh AB: ( 49 + 7 ) : 2 = 28 (cm)
Độ dài cạnh AC: 28 - 7 = 21 (cm)
Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:
\(BC^2=AC^2+AB^2\)
Hay \(BC^2=21^2+28^2\)
\(\Rightarrow BC^2=441+784\)
\(\Rightarrow BC^2=1225\)
\(\Rightarrow BC=35\left(cm\right)\)
Bài 2:
Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại D có:
\(AB^2=AD^2+BD^2\)
\(\Rightarrow AD^2=AB^2-BD^2\)
Hay \(AD^2=17^2-15^2\)
\(\Rightarrow AD^2=289-225\)
\(\Rightarrow AD^2=64\)
\(\Rightarrow AD=8\left(cm\right)\)
Trong tam giác ABC có:
\(AD+DC=AC\)
\(\Rightarrow DC=AC-AD=17-8=9\left(cm\right)\)
Áp dụng định lý Py-ta-go vào tam giác BCD vuông tại D có:
\(BC^2=BD^2+DC^2\)
Hay \(BC^2=15^2+9^2\)
\(\Rightarrow BC^2=225+81\)
\(\Rightarrow BC^2=306\)
\(\Rightarrow BC=\sqrt{306}\approx17,5\left(cm\right)\)