Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mệnh đề C sai.
Xét:
A. Đúng
Vẽ hbh ABDC => \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\left|\overrightarrow{AD}\right|=AD\) (\(=2AH\))
Ta lại có, \(\Delta ABH\) vuông tại H, theo Pytago:
\(AH=\sqrt{AB^2-\frac{AB^2}{4}}=\frac{3\sqrt{3}}{2}\) \(\Rightarrow AD=3\sqrt{3}\)
B. Đúng
Vẽ hình vuông AECH\(\Rightarrow\) AEHB là hbh
Ta có:
\(\left|\overrightarrow{BA}+\overrightarrow{BH}\right|=\left|\overrightarrow{BA}+\overrightarrow{AE}\right|=\left|\overrightarrow{BE}\right|=BE\)
Ta lại có, \(\Delta BCE\) vuông tại C, theo Pytago:
\(BE=\sqrt{BC^2+CE^2}=\sqrt{BC^2+AH^2}=\frac{\sqrt{63}}{2}\)
C. Sai
Vẽ hbh AFHC \(\Rightarrow\)AFBH là hình vuông
\(\Rightarrow\left|\overrightarrow{HA}+\overrightarrow{HB}\right|=\left|\overrightarrow{HA} +\overrightarrow{AF}\right|=HF\) \(=AC=3\)
D. Đúng
\(\left|\overrightarrow{HA}-\overrightarrow{HB}\right|=\left|\overrightarrow{BA}\right|=BA=3\)
+) \(\left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \widehat {ABC} = 60^\circ \)
+) Dựng hình bình hành ABCD, ta có: \(\overrightarrow {AD} = \overrightarrow {BC} \)
\( \Rightarrow \left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right) = \left( {\overrightarrow {AB} ,\overrightarrow {AD} } \right) = \widehat {BAD} = 120^\circ \)
+), Ta có: ABC là tam giác đều, H là trung điểm BC nên \(AH \bot BC\)
\(\left( {\overrightarrow {AH} ,\overrightarrow {BC} } \right) = \left( {\overrightarrow {AH} ,\overrightarrow {AD} } \right) = \widehat {HAD} = 90^\circ \)
+) Hai vectơ \(\overrightarrow {BH} \) và \(\overrightarrow {BC} \)cùng hướng nên \(\left( {\overrightarrow {BH} ,\overrightarrow {BC} } \right) = 0^\circ \)
+) Hai vectơ \(\overrightarrow {HB} \) và \(\overrightarrow {BC} \)ngược hướng nên \(\left( {\overrightarrow {HB} ,\overrightarrow {BC} } \right) = 180^\circ \)