K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2019

MA+MC= MA-MB

<=> 2 MI=BA

=> MI=BA/2

=> I thuộc đường tròn I bán kính AB/2

25 tháng 9 2019

nãy mk quên giải thik: 

a, gọi I la trung điểm của AC=> MA+MC=2MI

hok tốt

22 tháng 10 2023

a: Gọi M là trung điểm của AB

Xét ΔABC có

G là trọng tâm

M là trung điểm của AB

Do đó: CG=2/3CM

=>CG=2GM

=>\(\overrightarrow{CG}=2\overrightarrow{GM}\)

\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\)

\(=2\overrightarrow{GM}+\overrightarrow{GC}\)

\(=\overrightarrow{CG}+\overrightarrow{GC}=\overrightarrow{0}\)

b: \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\)

\(=\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\)

\(=3\cdot\overrightarrow{MG}+\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)

\(=3\cdot\overrightarrow{MG}\)

14 tháng 9 2023

Ta thấy \(\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{MA}+\overrightarrow{BM}+\overrightarrow{MC}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{BA}=\overrightarrow{CM}\)

Như vậy, điểm M chính là đỉnh thứ tư của hình bình hành ABCM.

 

 

30 tháng 11 2021

\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}\)⇒ O là trọng tâm tam giác ABC

\(\overrightarrow{K\text{A}}+2\overrightarrow{KB}=\overrightarrow{CB}=\overrightarrow{0}\Rightarrow\overrightarrow{K\text{A}}+\overrightarrow{KB}+\overrightarrow{KB}+\overrightarrow{BC}=\overrightarrow{0}\Rightarrow\overrightarrow{K\text{A}}+\overrightarrow{KB}+\overrightarrow{KC}=\overrightarrow{0}\)

⇒ K là trọng tâm tam giác ABC

Câu cuối chịu :))

19 tháng 10 2016

u

26 tháng 12 2023

Xét ΔABC có G là trọng tâm

nên \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

\(\dfrac{1}{3}\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)\)

\(=\dfrac{1}{3}\left(\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right)\)

\(=\dfrac{1}{3}\left(3\cdot\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)

\(=\dfrac{1}{3}\cdot3\cdot\overrightarrow{MG}=\overrightarrow{MG}\)