Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xin lỗi mk ko biết vẽ hình trên máy
a) Xét tam giác ABD và tan giác EBD có :
BD chung
góc ABD = góc EBD ( vì BD la phân giác góc B )
góc A = góc E ( = 90 )
=> Tam giác ABD = tam giác EBD ( cạnh huyền- góc nhọn )
=> AD = DE
Chúc bạn hc tốt
Đáp án:
A) Xét ΔABD và ΔEBD có:
+) AB=BE (gt)
+) góc ABD= góc EBD (do BD là phân giác góc B)
+) BD chung
=> ΔABD = ΔEBD (c-g-c)
b)
Qua C kẻ đường thẳng vuông góc với BD tại H.
Xét ΔBCF có: BH là đường cao đồng thời là phân giác của góc B
=> ΔBCF cân tại B (tính chất)
=> BC= BF (điều phải chứng minh)
c)
Xét ΔABC và ΔEBF có:
+) AB = EB (gt)
+) góc B chung
+) BC= BF (câu b)
=> ΔABC = ΔEBF (c-g-c)
d)
Từ ý a, ΔABD = ΔEBD (c-g-c)
=> góc BAD= góc BED = 90
=> DE ⊥ BC
Xét ΔBCF có: BH và CA là 2 đường cao cắt nhau tại D
=> D là trực tâm
=> FD ⊥ BC
=> DE trùng với FD
=> D,E,F thẳng hàng
a, Xét ∆ ABC vuông tại A
➡️AB2 + AC2 = BC2 (Pitago)
➡️BC2 = 32 + 42
➡️BC2 = 25
➡️BC = 5 (cm)
b, Xét ∆ ABD và ∆ EBD có:
Góc A = góc E = 90°
BD chung
Góc ABD = góc EBD (gt)
➡️∆ ABD = ∆ EBD (ch - gn)
➡️AB = EB (2 cạnh t/ư)
c, Ta có:
BA + AK = BK
BE + EC = BC
mà AB = EB (cmt)
AK = EC (gt)
➡️BK = BC
Xét ∆ BKI và ∆ BCI có:
BK = BC (cmt)
Góc ABD = góc EBD (gt)
BI chung
➡️∆ BKI = ∆ BCI (c.g.c)
➡️Góc BKI = góc BCI (2 góc t/ư)
d, Xét ∆ ABI và ∆ EBI có:
AB = EB (cmt)
Góc ABD = góc EBD (gt)
BI chung
➡️∆ ABI = ∆ EBI (c.g.c)
➡️IA = IE (2 cạnh t/ư)
Hok tốt~
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
Do đó: ΔBAD=ΔBED
Suy ra: DA=DE
b: Ta có: AD=DE
mà DE<DC
nên AD<DC
c: Ta có: BA=BE
DA=DE
DO đó: BD là đường trug trực của AE
=>F là trung điểm của AE
hay CFlà đường trung tuyến của ΔACE