Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta ABC=\Delta HIK;\Delta ACB=\Delta HIK\Rightarrow\Delta ABC=\Delta ACB\Rightarrow\widehat{B}=\widehat{C}\) (2 góc tương ứng).Vậy ta có đpcm
ta có tam giác ABC= tam giác HIK (1)
tam giác ABC=tam giác HIK (2)
Từ (1) và (2) => tam giác ABC=tam giác ABC => đpcm
cho mik nha
cho tam giác ABC=tam giác DEF và tam giác DEF = tam giác HIK. chứng minh tam giác ABC = tam giác HIK
Ta có: tam giác ABC=tam giác DEF (1)
và tam giác DEF = tam giác HIK (2)
Từ (1) và (2) => tam giác ABC = tam giác HIK
( bạn tự vẽ hình)
a, xét tam giác ABE và tam giác ACE có:
AE chung
AB=AC (gt)
góc BAE=góc CAE( vì AE là tia phân giác của góc BAC)
=> tam giác ABE=tam giác ACE
b, vì tam giác ABE=tam giác ACE( cmt)=> BE=CE( 2 cạnh tương ứng)(1)
=> góc BEA=góc CEA ( 2 góc tương ứng)
mà 2 góc này kề bù
=> góc BEA=góc CEA= 180 độ : 2= 90 độ
=> AE vuông góc với BC (2)
từ (1) và (2) ta có AE là đường trung trực của BC.
a, xét tam giác ABE và tam giác ACE có:
AE chung
AB=AC (gt)
góc BAE=góc CAE( vì AE là tia phân giác của góc BAC)
=> tam giác ABE=tam giác ACE
b, vì tam giác ABE=tam giác ACE( cmt)=> BE=CE( 2 cạnh tương ứng)(1)
=> góc BEA=góc CEA ( 2 góc tương ứng)
mà 2 góc này kề bù
=> góc BEA=góc CEA= 180 độ : 2= 90 độ
=> AE vuông góc với BC (2)
từ (1) và (2) ta có AE là đường trung trực của BC.