Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Dùng thước thẳng có vạch chia hoặc compa kiểm tra được AC = A'C'
b) Hai tam giác ABC và A'B'C' có bằng nhau vì 3 cặp cạnh đều bằng nhau
a) Làm theo bạn Doan Thanh phuong nhé!
b) Ta có: A = 90o => Tam giác ABC vuông tại a.
Áp dụng định lý Pitago. Ta có:
\(AB^2+AC^2=BC^2\Leftrightarrow3^2+4^2=9+16=25\)
\(\Rightarrow BC^2=25\). Mà \(25=5^2\Rightarrow BC=5\) cm
a) Xét tam giác ABC và tam giác A'B'C' có :
\(\widehat{A}=\widehat{A'}\left(gt\right)\)
AB = A'B' ( gt )
AC = A'C' ( gt )
Suy ra tam giác ABC = tam giác A'B'C' ( c - g - c )
b) Ta có tam giác ABC vuông tại A ( gt )
=> AB2 + AC2 = BC2 ( định lý Py-ta-go )
hay 32 + 42 = BC2
BC2 = 32 + 42 = 9 + 16 = 25
=> BC = 5
a'b'=8
a'c'=6
b'c'=10
Ta có:
AB:AC=4:3 =>\(\frac{AB}{4}=\frac{AC}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{AB}{4}=\frac{AC}{3}=\frac{AB+AC}{4+3}=\frac{14}{7}=2\)
=>\(\frac{AB}{4}=2\)=>AB=8
\(\frac{AC}{3}=2\)=>AC=4
Vì tam giác ABC= tam giác A'B'C'
=>AB=A'B' ; AC=A'C' ; BC=B'C'
Mà AB=8 ;AC=4 ;BC=10
=>A'B'=8 ;A'C'=4 ;B'C'=10