K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2020

Đề sai nhé!

8 tháng 11 2019

A B C I H K D E M N

Bổ đề 1: Xét tứ giác MNPQ là tứ giác lồi có MP giao NQ tại R. Gọi H,K lần lượt là trực tâm của tam giác MRN;PRQ. U và V lần lượt là trung điểm của NP và MQ. Khi đó UV vuông góc với HK.

Bổ đề 2: Xét tam giác ABC nội tiếp (O), L là điểm chính giữa cung BAC. Lấy X thuộc cạnh AB, Y thuộc cạnh AC sao cho BX = CY. Khi đó LX = LY.

Hai bổ đề trên rất quen thuộc, các bạn tự chứng minh.

Giải bài toán: Đặt M,N thứ tự là trung điểm của BD,CE. Ta có BM = CN (= BD/2 = CE/2)

Gọi K là trung điểm cung BAC. Theo Bổ đề 2 thì KM = KN (1)

Dễ thấy ID = IC; IB = IE; BD = CE. Suy ra \(\Delta\)BID = \(\Delta\)EIC (c.c.c)

Hai tam giác trên có trung tuyến tương ứng là IM,IN. Do đó IM = IN (2)

Để ý rằng I là trực tâm của \(\Delta\)BFC. Áp dụng Bổ đề 1 vào tứ giác BDEC ta được IH vuông góc MN  (3)

Từ (1);(2) và (3) suy ra ba điểm I,H,K thẳng hàng. Đó là điều phải chứng minh.

8 tháng 3 2019

1). Gọi DE cắt (O) tại P khác D. Do AD là đường kính của (O), suy ra A P D ^ = 90 0 , mà A H E ^ = 90 0 ( do  H E ∥ B C ⊥ H A  ), nên tứ giác APEH nội tiếp.

Ta có A P H ^ = A E H ^  (góc nội tiếp)

= A C B ^ H E ∥ B C = A P B ^ (góc nội tiếp)

⇒ P H ≡ P B

2). Ta có H P ⊥ A C ⇒ A E H ^ = A H P ^ = A E P ^  

Suy ra EA là phân giác ngoài đỉnh E của tam giác DEF

Tương tự FA là phân giác ngoài đỉnh F của tam giác DEF

Suy ra A là tâm đường tròn bàng tiếp ứng với đỉnh D của tam giác DEF

3). Do I là tâm nội tiếp nên EI là tia phân giác trong.

Mà EA là tia phân giác ngoài, suy ra  E I ⊥ A C ⇒ E I ∥ H B

Tương tự F I ∥ H C ;   E F ∥ B C ⇒ Δ I E F   v à   Δ H B C có cạnh tương ứng song song, nên BE; CF và IH đồng quy.

Tọa độ G là;

\(\left\{{}\begin{matrix}x=\dfrac{4+2+0}{3}=2\\y=\dfrac{0-4-2}{3}=-2\end{matrix}\right.\)

Tọa độ M là:

x=(2+0)/2=1 và y=(-4-2)/2=-3

Tọa độ N là:

x=(4+0)/2=2 và y=(0-2)/2=-1

Tọa độ P là;

x=(4+2)/2=3 và y=(0-4)/2=-2

Tọa độ trọng tâm của tam giác MNP là:

\(\left\{{}\begin{matrix}x=\dfrac{1+2+3}{3}=2\\y=\dfrac{-3-1-2}{3}=-2\end{matrix}\right.\)

=>Tam giác ABC và tam giác MNP có chung trọng tâm

27 tháng 8 2018

Giải bài 9 trang 17 sgk Hình học 10 | Để học tốt Toán 10

Ta có:

Giải bài 9 trang 17 sgk Hình học 10 | Để học tốt Toán 10

⇒ ΔMHS đều.

MD ⊥ SH nên MD là đường cao đồng thời là trung tuyến của ΔMHS.

⇒ D là trung điểm của HS

Giải bài 9 trang 17 sgk Hình học 10 | Để học tốt Toán 10

Chứng minh tương tự ta có:

Giải bài 9 trang 17 sgk Hình học 10 | Để học tốt Toán 10

(Vì các tứ giác BSMP, HMQC, MRAG là hình bình hành)

Giải bài 9 trang 17 sgk Hình học 10 | Để học tốt Toán 10

19 tháng 8 2023

Để chứng minh F là trọng tâm của tam giác AMN, ta cần chứng minh ba đường phân giác AM, AN và FM đồng quy tại một điểm. Thực hiện theo các bước sau:

Bước 1: Chứng minh AM cắt FN tại điểm P.

Vì CM là đường phân giác của tam giác ABC nên từ hai tỉ lệ bằng nhau CD/DB = CE/EA ta có: AD
/ DB = AE/EC
Do đó, tam giác ADE và CDB đồng dạng theo tỷ lệ AD/DB = AE/EC.

Từ đó suy ra:
AM/MB = (AD + DM)/DB = (AE + EM)/(EC + CB) = AE/EC = AC/CE = AC/(AC/6) = 6 Tương tự,

ta có:
AN/NC = AD/DB = 2
FM/MB = FB + BM/MB = FB/(BC/3) + FM/(FM-MB) = 3

Vậy tam giác AMN đồng dạng với tam giác ABC theo tỷ lệ 6:2:3.

Bước 2: Chứng minh FM cắt AN tại một điểm Q.

Vì FM = 2FB nên từ tam giác FBM ta có FB = FM/2 = FM/2FB, do đó tam giác FNB đồng dạng với tam giác ABC theo tỷ lệ 1:2.

Vậy AM, FN và EQ đồng qui tại một điểm P.

Bước 3: Chứng minh đường phân giác FM cắt AN tại điểm P.

CM = FM và CN = FN, từ đó tam giác CMN và FMN đồng dạng theo tỉ lệ 1: 1.

8 tháng 9 2016

vì DE,EF,DF LA NHUNG DUONG trung binh nen ta se co ca cap vectơ sau : DE=FA=BF,EF=CD=DB,DF=EA=CE