K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2018

a, \(BA=BD\left(gt\right)\Rightarrow\Delta ABD\) cân tại B có BH là đường cao nên BH là đường trung tuyến ứng với cạnh AD

\(\Rightarrow H\)là trung điểm của AD

\(CE=CA\left(gt\right)\Rightarrow\Delta ACE\)cân tại C có CK là đường cao nên CK là đường trung tuyến ứng với cạnh AE

\(\Rightarrow K\)là trung điểm của AE.

HK là đường trung bình của tam giác ADE \(\Rightarrow HK//DE\)hay \(HK//BC\)

b, \(\Delta ADC\)có: H là trung điểm của AD và \(HN//DC\left(cmt\right)\)

\(\Rightarrow N\)là trung điểm của AC

Tương tự, M là trung điểm của AB.

\(\Delta AHB\)có HM là đường trung tuyến ứng với cạnh huyền AB \(\Rightarrow HM=\frac{1}{2}AB\)

\(\Delta AKC\)có KN là đường trung tuyến ứng với cạnh huyền AC \(\Rightarrow KN=\frac{1}{2}AC\)

MN là đường trung bình của \(\Delta ABC\left(gt\right)\Rightarrow MN=\frac{1}{2}BC\)

Từ 3 điều trên, ta được:

\(\Rightarrow HM+KN+MN=\frac{1}{2}\left(AB+AC+BC\right)\Rightarrow HK=\frac{1}{2}\left(AB+AC+BC\right)\)

Chúc bạn học tốt.


 

4 tháng 5 2015

1b) Tam giác AMN vuông tại M có góc A = 600 => góc N = 300

Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 300) nên chúng đồng dạng

=> SAMD/SNMA = (AM/MN)2 = AM2/MN2 (1)

Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 600

=> tg AMI đều => AM = AI = 1/2AN

Theo Pytago ta có AN2 = AM2 + MN2 => (2AM)2 - AM2 =MN2 => 3AM2 = MN2 => AM2/MN2 = 1/3 (2)

Từ (1) và (2) bn suy ra nhé

26 tháng 4 2019

1b) Tam giác AMN vuông tại M có góc A = 60o

Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 30o) nên chúng đồng dạng

=> SAMD/SNMA  = (AM/MN)2 = AM2 /MN2 (1)

Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 60o

=> tg AMI đều => AM = AI = 1/2AN

Từ (1) và (2) bn suy ra nhé

a: AD là phân giác

=>BD/AB=CD/AC

=>BD/6=3/9=1/3

=>BD=2cm

b: \(S_{ABC}=\dfrac{1}{2}\cdot3\cdot\left(2+3\right)=\dfrac{3}{2}\cdot5=\dfrac{15}{2}\left(cm^2\right)\)