K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

Theo đề bài, AD là tia phân giác của \(\widehat {BAC}\), áp dụng tính chất đường phân giác vào tam giác ABC, ta có: \(\dfrac{{AC}}{{AB}} = \dfrac{{DC}}{{DB}}\)                (1)

Đường thẳng qua D song song với AB cắt AC tại E hay DE // AB, áp dụng định lí Thalès vào tam giác ABC, ta có: \(\dfrac{{DC}}{{DB}} = \dfrac{{EC}}{{E{\rm{A}}}}\)           (2)

Từ (1) và (2) suy ra \(\dfrac{{AC}}{{AB}} = \dfrac{{EC}}{{E{\rm{A}}}}\) (đpcm).

a: Xét tứ giác AEDF có

AE//DF

AF//DE

Do đó: AEDF là hình bình hành

Hình bình hành AEDF có AD là phân giác của góc FAE

nên AEDF là hình thoi

b: Xét ΔABC có AD là phân giác

nên \(\dfrac{CD}{DB}=\dfrac{AC}{AB}\left(1\right)\)

Xét ΔABC có DE//AB

nên \(\dfrac{CD}{DB}=\dfrac{CE}{EA}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{AC}{AB}=\dfrac{EC}{EA}\)

=>\(AC\cdot AE=AB\cdot EC\)

20 tháng 7 2017
  1. 22222222​​
  2. 2
  3. 3
  4. 3
  5. 3
  6. 3
  7. 3
  8. 3
  9. 3
  10. 3
31 tháng 1 2023

Do DE song song BC 

=> Theo định lý Talet, DA/DB = EA/EC

Mà DA/DB= EC/EA

=> EC=EA

=> E là trung điểm AC

=> DE là đường trung bình của tam giác ABC

=> D cũng là trung điểm AB

10 tháng 10 2021

undefined

29 tháng 12 2019

Chứng minh tứ giác AEDF là hình thoi

Þ EF là phân giác của  A E D ^

28 tháng 3 2017

Hình tự vẽ nha bạn

Vì AD là đường phân giác của góc A

=> \(\widehat{BAD}=\widehat{DAE}\)

Vì AB//ED =>\(\widehat{BAD}=\widehat{EDA}\)(2 góc so le trong)

Mà góc BAD=góc DAE=> \(\widehat{DAE}=\widehat{EDA}\)

=> tam giác EAD cân tại E

=>EA=ED

Ta có: AB//ED cắt FE//BC => BF=ED(theo tính chất đoạn chắn)

Mà EA=ED=> AE=BF(=ED)

31 tháng 12 2016

bài này khó

20 tháng 7 2023

Xét `\triangle ABC` có:

  `@ ED //// AC=>[AE]/[AB]=[DC]/[BC]`

   `@DF //// AB=>[AF]/[AC]=[BD]/[BC]`

`=>[AE]/[AB]+[AF]/[AC]=[DC+BD]/[BC]=[BC]/[BC]=1`  `(đpcm)`.

27 tháng 3 2020

zì \(\hept{\begin{cases}MD//AE\\ME//AD\end{cases}}\)

=> tứ giác ADME là hbh

=>\(\hept{\begin{cases}AD=ME\\AE=MD\end{cases}}\)

=>\(\frac{AD}{AB}=\frac{ME}{AB}\)

mà ME//AB

=>\(\frac{ME}{AB}=\frac{CE}{AC}=>\frac{AD}{AB}=\frac{CE}{AC}\)

=>\(\frac{AD}{AB}+\frac{AE}{AC}=\frac{CE}{AC}+\frac{AE}{AC}=\frac{CE+AE}{AC}=\frac{AC}{AC}=1\left(dpcm\right)\)