K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
26 tháng 2 2020
Câu hỏi của Tôi Là Ai - Toán lớp 8 - Học toán với OnlineMath
8 tháng 3 2020
Gợi ý: Để chứng tỏ ∆HKM đều, ta sẽ chứng minh rằng HK=KM và ^HKM=60°. Gọi I là trung điểm AC. Trước hết ta thấy ^HAK=^MIK (chú ý rằng ^DAC=^MIC). Do đó ∆HAK=∆MIK (c.g.c) nên HK=KM, ^AKH=^IKM, từ đó ^HKM=60°.
V
30 tháng 6 2016
Gọi F trung điểm AC.=>AK=FK=\(\frac{1}{2}\)CE(1),AH=FM=\(\frac{1}{2}\)AD (đường trung bình)(2)
Góc HAK=120o+DAC, mà KFC=120o,MFC=DAC(MF//AD)
=>HAK=KFC+MFC=KFM(3)
(1,2,3)\(\Delta AHK=\Delta FMK\)(cgc)=>HK=KM(4), AKH=FKM
mà AKH+HKF=AKF=60o=>FKM+HKF=HKM=60o(5)
(4),(5)=>\(\Delta HKM\)đều
Gọi I là trung điểm của AC
IM là đường trung bình của tam giác ADC nên IM //AD
Do đó ^DAC = ^MIC (hai góc đồng vị)
IK là đường trung bình của tam giác AEC nên IK//EC
Mà ^ACE = 600 (gt) nên ^KIC = 120 độ
Lúc đó ^MIK = 1200 + ^MIC
Lại có: ^HAK = ^BAD + ^DAC + ^CAE = 1200 + ^DAC
Từ đó suy ra ^HAK = ^MIK
Dễ thấy tam giác AKI đều nên AK = IK
Xét hai tam giác AHK và IMK có:
AK = IK (cmt)
^HAK = ^MIK (cmt)
AH = IM (cùng bằng 1 nửa cạnh AB)
Do đó tam giác AHK = tam giác IMK (c.g.c)
Suy ra HK = MK (hai cạnh tương ứng) (1)
và ^AKH = ^IKM mà ^AKH + ^HKI = 600 nên ^IKM + ^HKI = ^HKM = 600 (2)
Từ (1) và (2) suy ra tam giác HKM đều (đpcm)