K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2021

a: Xét tứ giác BHCI có 

E là trung điểm của BC

E là trung điểm của HI

Do đó: BHCI là hình bình hành

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Xét tứ giác \(ABDC\) có:
\(M\) là trung điểm của \(BC\) (gt)
\(M\) là trung điểm của \(AD\) (do \(D\) đối xứng với \(A\) qua \(BC\))
Suy ra \(ABDC\) là hình bình hành
b) Do \(\Delta ABC\) cân tại \(A\), có \(AM\) là trung tuyến (gt)
Suy ra \(AM\) là đường cao, trung trực, phân giác
Suy ra \(AM\) vuông góc \(BM\) và \(CM\)
Xét tứ giác \(OAMB\) ta có:
\(E\) là trung điểm của \(OM\) và \(AB\) (gt)
Suy ra \(OAMB\) là hình bình hành
Suy ra \(OB\) // \(AM\); \(OA\) // \(MB\); \(OA = BM\); \(OB = AM\)
Mà \(AM \bot BM\) (cmt)
Suy ra: \(AM \bot OA\); \(OB \bot MB\)
Mà \(AM\) // \(OB\) (cmt)
Suy ra \(OB \bot OA\)
Xét \(\Delta AOB\) và \(\Delta MBO\) (các tam giác vuông) ta có:
\(\widehat {{\rm{AOB}}} = \widehat {{\rm{OBM}}} = 90^\circ \)
\(AO = MB\) (cmt)
\(OB = AM\) (cmt)
Suy ra \(\Delta AOB = \Delta MBO\) (c-g-c)
Suy ra \(OM = AB\)
c) \(OM = AB\) (cmt)
Mà \(EM = EO = \frac{1}{2}OM\); \(EA = EB = \frac{1}{2}AB\)
Suy ra \(EO = EA = EM = EB\) (1)
Xét \(\Delta ABC\) cân ta có: \(\widehat {{\rm{ABC}}} = \widehat {{\rm{ACB}}}\) và \(AB = AC\)
Mà \(EA = EB = \frac{1}{2}AB\); \(FA = FC = \frac{1}{2}AC\) (gt)
Suy ra \(AE = EB = FA = FM\) (2)
Xét \(\Delta BEM\) và \(\Delta CMF\) ta có:
\(BE = CF\) (cmt)
\(\widehat {{\rm{ABC}}} = \widehat {{\rm{ACB}}}\) (cmt)
\(BM = CM\) (gt)
Suy ra \(\Delta BEM = \Delta CFM\) (c-g-c)
Suy ra \(EM = FM\) (3)
Từ (1), (2), (3) suy ra \(AE = AF = FM = ME\)
Suy ra \(AEMF\) là hình thoi

25 tháng 2 2022

a) ta có A đối xứng với F qua O => O là trung điểm của AF 

=> BO là trung tuyến của AF (1) 

=> CO là trung tuyến của AF (2) 

ta lại có O là giao điểm của 3 đường trung trực của tam giác ABC 

=> OA = OB =OC (3)

từ 1-2-3 => Góc ABF = góc ACF = 90 

=> AB vuông góc với FB 

AC vuông góc với FC 

mà CH vuông góc AB => CH // BF 

BH vuông góc với AC => BH//CF 

Xét tứ giác BHCF có 

CH // BF

BH//CF 

=> HBFC là hình bình hành (dhnb) có HF và BC là 2 đường chéo 

M là trung điểm của BC 

=> M là trung điểm của HF => 3 điểm H,M,F thẳng hàng ; HM =FM 

=> H đối xứng với F qua M 

b) Xét tam giác AHF có M là trung điểm của HF O là trung điểm AF 

=> OM là đường trung bình 

=> OM =1/2AH <=> AH/OM=2

vì H là giao điểm của 2 đường cao BD và CE nên H là trực tâm => AH vuông góc BC

ta lại có OM vuông góc với BC ( M là trung điểm của BC ; O là giao 3 đường trung tuyến => OM là đường trung tuyến của BC )

=> OM // AH => góc HAG =góc GMO (2 góc so le trong)

xét tam giác AHG và tam giác MOG 

có :góc HGA =góc  MGO (2 góc đối đỉnh)

góc HAG =góc GMO (cmt) 

=> đồng dạng (gg) => AH /OM = AG/MG =2 

<=> AG=2MG <=> AM = AG + MG =3MG

<=> AG/AM =2/3 mà AM là tiếp tuyến của BC ( m là trnug điểm BC)

=> G là trọng tâm của tma giác ABC 

 

25 tháng 2 2022

sửa lại AM là trung tuyến nhé

9 tháng 9 2016

 Võ Hồng Nhung                                                                                                                 

               1 phút trước (15:05)

Cho tam giác ABC. Gọi D, E, F lần lượt là trung điểm của BC, AC, AB. Gọi O là 1 điểm bất kì. A' là điểm đối xứng với O qua D, B' là điểm đối xứng với O qua E, C' là điểm đối xứng với O qua F. Chứng minh AA', BB', CC' đồng quy tại 1 điểm.

17 tháng 10 2021

a: Xét ΔABC có 

E là trung điểm của AB

F là trung điểm của AC

Do đó: EF là đường trung bình củaΔBAC

Suy ra: EF//BC