Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có
góc C chung
Do đo; ΔCDA đồng dạng với ΔCEB
Suy ra: CD/CE=CA/CB
hay \(CD\cdot CB=CE\cdot CA\left(1\right)\)
b": Xét ΔCIB vuông tại I có ID là đường cao
nên \(CD\cdot CB=CI^2\left(2\right)\)
Xét ΔCQA vuông tại Q có QE là đường cao
nên \(CE\cdot CA=CQ^2\left(3\right)\)
Từ (1), (2) và (3)suy ra CI=CQ
a: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có
góc C chung
Do đó: ΔCDA đồng dạng với ΔCEB
Suy ra: CD/CE=CA/CB
hay \(CD\cdot CB=CE\cdot CA\left(1\right)\)
b: Xét ΔCIB vuông tại I có ID là đường cao
nên \(CI^2=CD\cdot CB\left(2\right)\)
Xét ΔCQA vuông tại Q có QE là đường cao
nên \(CQ^2=CE\cdot CA\left(3\right)\)
Từ (1), (2)và (3) suy ra CI=CQ
hay ΔCIQ cân tại C
a: Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>BD//CH
Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
=>CD//BH
Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
b: BHCD là hình bình hành
nên BC cắt HD tại trung điểm của mỗi đường
=>I là trung điểm của HD
Xét ΔDAH có DI/DH=DO/DA
nen Io//AH và IO=AH/2
=>AH=2OI
a) Ta có: \(\angle BEC=\angle BDC=90\Rightarrow BCDE\) nội tiếp \(\Rightarrow\angle ADE=\angle ABC\)
Xét \(\Delta ADE\) và \(\Delta ABC:\) Ta có: \(\left\{{}\begin{matrix}\angle BACchung\\\angle ADE=\angle ABC\end{matrix}\right.\)
\(\Rightarrow\Delta ADE\sim\Delta ABC\left(g-g\right)\Rightarrow\dfrac{AD}{AB}=\dfrac{AE}{AC}\Rightarrow AD.AC=AE.AB\)
b) Vì \(\Delta AMC\) vuông tại M có \(MD\bot AC\Rightarrow AM^2=AD.AC\)
Vì \(\Delta ANB\) vuông tại N có \(NE\bot AB\Rightarrow AN^2=AE.AB\)
mà \(AE.AB=AD.AC\Rightarrow AM^2=AN^2\Rightarrow AM=AN\)
\(\Rightarrow\Delta AMN\) cân tại A
c) Từ D kẻ đường thẳng vuông góc với DE cắt CE tại F
Xét \(\Delta DEF\) và \(\Delta DBC:\) Ta có: \(\left\{{}\begin{matrix}\angle EDF=\angle BDC=90\\\angle DEF=\angle DBC\left(BEDCnt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta DEF\sim\Delta DBC\left(g-g\right)\Rightarrow\dfrac{DE}{EF}=\dfrac{DB}{BC}\Rightarrow DE.BC=DB.EF\)
Ta có: \(\angle EDF-\angle BDF=\angle CDB-\angle BDF\left(=90-\angle BDF\right)\)
\(\Rightarrow\angle EDB=\angle CDF\)
Xét \(\Delta DEB\) và \(\Delta DFC:\) Ta có: \(\left\{{}\begin{matrix}\angle EDB=\angle FDC\\\angle DCF=\angle DBE\left(BEDCnt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta DEB\sim\Delta DFC\left(g-g\right)\Rightarrow\dfrac{CF}{BE}=\dfrac{CD}{BD}\Rightarrow BE.CD=BD.CF\)
\(\Rightarrow BE.CD+DE.BC=BD.CF+BD.EF=BD\left(CF+EF\right)\)
\(=BD.CE\)
Từng bài 1 thôi bạn!
vẽ trên đt thông cảm!
Do đường tròn ngoại tiếp tam giác ABC có tâm là O
Ta có bổ đề: \(OM=AN=NH=\frac{1}{2}AH\)(tự chứng minh)
Vì \(\widehat{BAH}=\widehat{OAC}\)(cùng phụ với \(\widehat{ABC}\))
Mà AK là phân giác của \(\widehat{BAC}\)
=> AK là phân giác
\(\widehat{HAO}\Rightarrow\widehat{NAK}=\widehat{KAO}\)
Theo bổ đề trên ta có tứ giác ANMO là hình bình hành
=> HK//AO
=> \(\widehat{AKN}=\widehat{KAO}=\widehat{NAK}\left(cmt\right)\)
Hay tam giác NAK cân tại N mà N là trung điểm AH
=> AN=NH=NK
=> \(\Delta AHK\)vuông tại K