K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2019

Hỏi đáp Toán

(Hình vẽ thiếu góc M bạn thêm vô giúp mik)

a/ Ta có: \(\widehat{DAB}=\widehat{EAC}\left(=90^0\right)\)

=> \(\widehat{DAB}+\widehat{BAC}=\widehat{EAC}+\widehat{BAC}\)

=> \(\widehat{DAC}=\widehat{EAB}\)

Xét ΔADC và ΔABE ta có;

AD = AB (GT)

\(\widehat{DAC}=\widehat{EAB}\) (cmt)

AE = AC (GT)

=> ΔADC = ΔABE (c - g - c)

=> DC = BE (2 cạnh tương ứng)

Gọi giao điểm của DC và BE là O

Gọi giao điểm của AC và BE là M

Vì ΔADC = ΔABE (cmt)

=> \(\widehat{ACD}=\widehat{AED}\)(2 góc tương ứng)

Ta có: \(\widehat{AME}+\widehat{MAE}+\widehat{AEM}=\widehat{OMC}+\widehat{OCM}+\widehat{COM}\)

Mà: \(\widehat{ACD}=\widehat{AED}\) (cmt) và \(\widehat{AME}=\widehat{OMC}\) (đối đỉnh)

=> \(\widehat{EMA}=\widehat{COM}\)

Lại có:\(\widehat{EAM}=90^0\)(AE _|_ AC)

=> \(\widehat{COM}=90^0\)

=> OC ⊥ OM

Hay BE ⊥ DC (đpcm)

20 tháng 11 2019

undefined

Chúc bạn học tốt!

16 tháng 1 2017

A B C D E G F H M N

ta có góc DAC = góc EAB = 90 độ (gt)

suy ra \(\widehat{DAB}+\widehat{BAC}=\widehat{EAC}+\widehat{BAC}\) (vì tia AB nằm giữa 2 tia AD và AC , tia AC nằm giữa 2 tia AE và AB )

hay \(\widehat{DAC}=\widehat{EAB}\)

\(\Delta DAC\)\(\Delta BAE\)có \(\hept{\begin{cases}AD=AB\left(gt\right)\\\widehat{DAC}=\widehat{EAB}\left(cmt\right)\\AE=AC\left(gt\right)\end{cases}}\)

do đó \(\Delta DAC=\Delta BAE\left(c.g.c\right)\)

suy ra \(DC=BE\)(2 góc tương ứng)

và \(\widehat{EBA}=\widehat{CDA}\)( 2 góc tương ứng )

gọi giao điểm của AB và CD là G , giao điểm của DC và BE là F 

\(\Delta ADG\)và \(\Delta GBF\)có \(\hept{\begin{cases}\widehat{D}=\widehat{B}\left(cmt\right)\\\widehat{DGA}=\widehat{BGF}\\\Rightarrow\widehat{BFG}=\widehat{DAG}=90^o\end{cases}}\)(đối đỉnh)

hay \(BE⊥DC\)

b) ta có góc DAH là góc ngoài của tam giác AMD 

suy ra \(\widehat{DAH}=\widehat{AMD}+\widehat{ADM}\) hay \(\widehat{DAB}+\widehat{BAH}=\widehat{AMD}+\widehat{ADM}\)(vì tia AB nằm giữa 2 tia AD và AH )

mà \(\widehat{DAB}=\widehat{AMD}=90^o\)\(\Rightarrow\widehat{BAH}=\widehat{ADM}\)

\(\Delta ABH\)\(\Delta DAM\)có \(\hept{\begin{cases}DA=BA\left(gt\right)\\\widehat{BAH}=\widehat{ADM}\left(cmt\right)\end{cases}}\)

do đó \(\Delta ABH=\Delta DAM\)(cạnh huyền - góc nhọn )

suy ra AH =DM ( 2 cạnh tương ứng )

theo đề và từ hình vẽ ta có MN trùng AH

ta có góc EAH là góc ngoài của tam giác ANE  

\(\Rightarrow\widehat{EAH}=\widehat{ANE}+\widehat{AEN} hay \widehat{EAC}+\widehat{HAC}=\widehat{ANE}+\widehat{AEN}\)

mà \(\widehat{EAC}=\widehat{ANE}=90^o\)\(\Rightarrow\widehat{HAC}=\widehat{AEN}\)

\(\Delta ACH\)\(\Delta EAN\)có  

cạnh huyền AC = cạnh huyền AE

\(\widehat{HAC}=\widehat{AEN}\left(cmt\right)\)

do đó \(\Delta ACH=\Delta EAN\)(cạnh huyền góc nhọn )

suy ra AH = NE ( 2 cạnh tương ứng )

mà AH =DM

suy ra DM = NE 

ta có \(DM⊥NH;EN⊥NH\Rightarrow\)DM//EN

gọi giao điểm của DE và NH là T

xét tam giác vuông MTD và tam giác vuông NTE

góc MDT  = góc NET ( so le trong )

DM = NE (cmt) 

do đó \(\Delta MDT=\Delta NET\)(cạnh huyền góc nhọn )

suy ra DN = NE ( 2 cạnh tương ứng ) (1)

\(\Delta MDT\)và \(\Delta NET\)có \(\hept{\begin{cases}\widehat{MDT}=\widehat{NET}\\\widehat{DMT}=\widehat{ENT}=90^o\\\Rightarrow\widehat{DTM}=\widehat{ETN}\end{cases}}\)

ta có \(\widehat{NTE}+\widehat{MTE}=180^o\)( kề bù )

mà \(\widehat{NTE}=\widehat{DTM}\left(cmt\right)\)\(\Rightarrow\widehat{MTE}+\widehat{DTM}=180^o\)hay D;N;E thẳng hàng (2)

từ (1) và (2) suy ra N là trung điểm D;E 

hay MN và AH đi qua trung điểm DE

câu c gửi bạn sau mk đi học r

chúc bạn học tốt

24 tháng 11 2016

Mai nhé

24 tháng 12 2016

troi oi co ai giup tui hk vay troi

2 tháng 12 2018

mở sách giải ra mà cop

28 tháng 6 2016

D A B C E

a) Xét 2 tam giác DAC và BAE, có:

    DA = BA (gt)                             (1)

    AC = AE (gt)                             (2)

Lại có: ^DAB = ^CAE = \(90^0\) (do AD vuông góc với AB, AE vuông góc với AC)

=>  ^DAB + ^BAC = ^CAE + ^BAC

hay ^DAC = ^BAE                          (3)

Từ (1), (2) và (3), ta suy ra: \(\Delta\)DAC = \(\Delta\)BAE (c.g.c)

=>  DC = BE (2 cạnh tương ứng)

b) Gọi giao điểm của BE và DC là O, giao điểm của AB và DC là I

Ta có: ^DIA = ^BIO (đối đỉnh)

          ^ADC = ^ABE (2 góc tương ứng do tg DAC = tg BAE)

Mà ^DIA + ^ADC = \(90^0\) (tam giác DAI vuông tại A)

 =>  ^BIO + ^ABE = \(90^0\)

=>  ^BOI = \(90^0\) 

=>  DC vuông góc với BE

12 tháng 12 2015

Cậu vẽ ra mình giải cho