K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. (Nam Tư, 81) Cho tam giác nhọn ABC không đều. Kẻ đường cao AH, trung tuyến BM và đường phân giác CL của góc ACB. Trung tuyến BM cắt AH và CL lần lượt tại P, Q. CL cắt AH ở R. Chứng minh rằng tam giác PQR không phải là tam giác đều.2. (Bỉ, 77) Chứng mình rằng nếu cho trước các số thực dương a, b, c và với mỗi giá trị của n N, tồn tại một tam giác có cạnh an, bn, cn thì tất cả tam giác đó...
Đọc tiếp

1. (Nam Tư, 81) Cho tam giác nhọn ABC không đều. Kẻ đường cao AH, trung tuyến BM và đường phân giác CL của góc ACB. Trung tuyến BM cắt AH và CL lần lượt tại P, Q. CL cắt AH ở R. Chứng minh rằng tam giác PQR không phải là tam giác đều.
2. (Bỉ, 77) Chứng mình rằng nếu cho trước các số thực dương a, b, c và với mỗi giá trị của n N, tồn tại một tam giác có cạnh an, bn, cn thì tất cả tam giác đó đều là tam giác cân.
3. (Thuỵ Điển, 82) Tìm tất cả các giá trị của n N để với mỗi giá trị đó tồn tại số m N, mà tam giác ABC có cạnh AB = 33, AC = 21, BC = n và các điểm D, E lần lượt ở trên cạnh AB, AC thoả mãn điều kiện AD=DE=EC=m.
4. (Việt Nam, 79) Tìm tất cả bộ ba các số a, b, c N là các độ dài các cạnh của tam giác nội tiếp đường tròn đường kính 6,25.
5. (Nữu Ước, 78) Tam giác ABC và tam giác DEF cùng nội tiếp trong một đường tròn. Chứng minh rằng chu vi của chúng bằng nhau khi và chỉ khi có: sinA+sinB+sinC=sinD+sinE+sinF.
6. (Nam Tư, 81) Một đường thẳng chia một tam giác thành hai phần có diện tích bằng nhau và chu vi bằng nhau. Chứng minh rằng tâm đường tròn nội tiếp tam giác nằm trên đường thẳng ấy.
7. (Áo, 83) Cho tam giác ABC, trên các cạnh AB, AC, BC lấy lần lượt các điểm C’, B’, A’ sao cho các đoạn AA’, BB’, CC’ cắt nhau tại một điểm. Các điểm A”, B”, C” lần lượt đối xứng với các điểm A, B, C qua A’, B’, C’. Chứng minh rằng: SA”B”C” = 3SABC + 4SA’B’C’
8. (Áo, 71) Các đường trung tuyến của tam giác ABC cắt nhau tại O. Cmr: AB2 + BC2 + CA2 = 3(OA2 + OB2 + OC2)
9. (Nữu Ước, 79) Chứng minh rằng nếu trọng tâm của một tam giác trùng với trọng tâm của tam giác có các đỉnh là trung điểm các đường biên của nó, thì tam giác đó là tam giác đều.
10. (Anh, 83) Giả sử O là tâm đường tròn ngoại tiếp tam giác ABC, D là trung điểm cạnh AB, E là trọng tâm tam giác ACD. Chứng minh rằng nếu AB=AC thì OE vuông góc với CD.
11. (Tiệp Khắc, 72) Tìm tất cả các cặp số thực dương a, b để từ chúng tồn tại tam giác vuông CDE và các điểm A, B ở trên cạnh huyền DE thoả mãn điều kiện: và AC=a, BC=b.
12. (Nữu Ước, 76) Tìm một tam giác vuông có các cạnh là số nguyên, có thể chia mỗi góc thành ba phần bằng nhau bằng thước kẻ và compa.
13. (Phần Lan, 80) Cho tam giác ABC. Dựng các đường trung trực của AB và AC. Hai đường trung trực trên cắt đường thẳng BC ở X và Y tương ứng. Chứng minh rằng đẳng thức: BC=XY
a) Đúng nếu tanB.tanC=3
b) Đẳng thức có thể đúng khi tanB.tanC 3: khi đó hãy tìm tập hợp M thuộc R để đẳng thức đã dẫn trên tương đương với điều kiện tanB.tanC M.
14. (Nữu Ước, 76) O là trực tâm của tam giác nhọn ABC. Trên đoạn OB và OC người ta lấy hai điểm B1 và C1 sao cho . Chứng minh rằng AB1=AC1.
15. (Anh, 81) O là trực tâm của tam giác ABC, A1, B1, C1 là trung điểm các cạnh BC, CA, AB. Đường tròn tâm O cắt đường thẳng B1C1 ở D1 và D2, cắt đường thẳng C1A1 ở E1 và E2, cắt đường thẳng A1B1 ở F1 và F¬2. Cmr: AD1=AD2=BE1=BE2=CF1=CF2.
16. (Nam Tư, 83) Trong tam giác ABC lấy điểm P, còn trên cạnh AC và BC lấy các điểm tương ứng M và L sao cho: và . Chứng minh rằng nếu D là trung điểm cạnh AB thì DM=DL.
17.Tìm quĩ tích các điểm M trong tam giác ABC thoả mãn điều kiện: MAB + MBC+ MCA=90
18.Kí hiệu Bij (i, j {1;2;3}) là điểm đối xứng của đỉnh Ai của tam giác thường A1A2A3 qua phân giác xuất phát từ đỉnh A1. Chứng minh rằng các đường thẳng B12B21, B13B31, B23B32 song song với nhau.
19. Đường phân giác trong và ngoài góc C của tam giác ABC cắt đường thẳng AB ở L và M. Chứng minh rằng nếu CL=CM thì: AC2+BC2=4R2 (R là bán kính đường tròn ngoại tiếp tam giác ABC).

0
25 tháng 8 2016

qua O x lay D sao cho D diểm doi sung cua a qua O x lay E sao cho E ldiểm em doi sung cua a qua O y doan DE cat O x dâuau thdiểmem B ở do, DE cat O y dâuau thi C ở dó 
de dang Cdượcoc tam Giác ABC có chu vi nhnhấtat

14 tháng 4 2016

- Tìm A’ đối xứng với A qua Oy , B’ đối xứng với A qua Ox

- Nối A’B’ cắt Ox tại B , cắt Oy tại C . Đó chính là hai điểm cần tìm

- Chứng minh B,C là hai điểm duy nhất cần tìm .

Thật vậy : Do A’ đối xứng với A qua Oy , cho nên CA=CA’ (1) . Mặt khác : B’ đối xứng với A qua Ox cho nên ta có BA=BB’ (2) .

Gọi P là chu vi tam giác ABC - do từ (1) và (2) - thì P=CA+CB+BA =CA’+CB+BB’=A’B’ 

29 tháng 8 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giả sử đã dựng được hai điểm M, N thỏa mãn điều kiện đầu bài. Đường thẳng qua M và song song với AC cắt BC tại D. Khi đó tứ giác MNCD là hình bình hành. Do đó CN = DM. Từ đó suy ra tam giác AMD cân tại M. Do đó Giải sách bài tập Toán 11 | Giải sbt Toán 11 . Suy ra AD là phân giác trong của góc A. Do đó AD dựng được .Ta lại có  N M →   =   C D → , nên có thể xem M là ảnh của N qua phép tịnh tiến theo vectơ  D C → .

Từ đó suy ra cách dựng:

- Dựng đường phân giác trong của góc A. Đường này cắt BC tại D.

- Dựng đường thẳng d là ảnh của đường thẳng AC qua phép tịnh tiến theo vectơ  C D → . d cắt AB tại M.

- Dựng N sao cho  N M →   =   C D → .

Khi đó dễ thấy M, N thỏa mãn điều kiện đầu bài.

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

Phép dời hình và phép đồng dạng trong mặt phẳng

30 tháng 9 2019

11 tháng 1 2019

19 tháng 3 2016

Gọi D là đỉnh thức tư của hình bình hành ABDC. Khi đó, O, M, D thẳng hàng.

Do giả thiết nên DB//MP, DC//MN. Từ đó, do O, M, D thẳng hàng, nên góc PMO = góc OMN <=> OM là phân giác góc PMN <=> DM là phân giác góc BDC

\(\Leftrightarrow\frac{MB}{MC}=\frac{DB}{DC}\)

Nhưng tứ  giác ABDC là một hình bình hành nên BD = AC, CD = AB

do đó : \(\frac{DB}{DC}=\frac{AC}{AB}\)

Vì vậy :

góc PMO bằng góc OMN   \(\Leftrightarrow\frac{MB}{MC}=\frac{AC}{AB}\)

Vậy với M là điểm trên cạnh BC sao cho \(\frac{MB}{MC}=\frac{AC}{AB}\)  (hay M đối xứng với chân phân giác trong góc BAC qua trung điểm cạnh BC) thì góc PMO bằng góc OMN => Điều cần chứng minh

 

19 tháng 3 2016

O A P B N C D M

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng