Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Xét tam giác $CDA$ và $CEB$ có:
$\widehat{C}$ chung
$\widehat{CDA}=\widehat{CEB}=90^0$
$\Rightarrow \triangle CDA\sim \triangle CEB$ (g.g)
$\Rightarrow \frac{CD}{CE}=\frac{CA}{CB}$
$\Rightarrow CD.CB=CA.CE$ (đpcm)
b)
Xét tam giác $BPC$ vuông tại $P$ có đường cao $PD$. Áp dụng công thức hệ thức lượng trong tam giác vuông ta có:
$CP^2=CD.CB(1)$
Xét tam giác $AQC$ vuông tại $Q$ có đường cao $QE$. Áp dụng công thức hệ thức lượng trong tam giác vuông ta có:
$CQ^2=CE.CA(2)$
Từ $(1);(2)$ mà $CD.CB=CE.CA$ theo kết quả phần a nên $CP^2=CQ^2$
$\Rightarrow CP=CQ$ (đpcm)
a: Xét ΔCEB vuông tạiE và ΔCDA vuông tại D có
góc C chung
Do đó: ΔCEB đồng dạng với ΔCDA
SUy ra: CE/CD=CB/CA
hay \(CA\cdot CE=CD\cdot CB\)(1)
b: Xét ΔAQC vuông tại Q có QE là đường cao
nên \(CQ^2=CE\cdot CA\left(2\right)\)
Xét ΔBPC vuông tại P có PD là đường cao
nên \(CP^2=CD\cdot CB\left(3\right)\)
Từ (1) (2) và (3) suy ra CQ=CP