Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có tứ giác DIKC nội tiếp nên \(\widehat{DKI}=\widehat{ICD}\) (Hai góc nội tiếp cùng chắn cung ID)
Lại có tứ giác ABDC nội tiếp nên \(\widehat{ICD}=\widehat{BCD}=\widehat{BAD}=\widehat{HAD}\)(Hai góc nội tiếp cùng chắn cung BD)
Tứ giác AHDK cũng nội tiếp nên \(\widehat{HAD}=\widehat{DKH}\)(Hai góc nội tiếp cùng chắn cung HD)
Vậy nên \(\widehat{DKI}=\widehat{DKH}\) hay H, K, I thẳng hàng.
a) D là giao điểm của đường vuông góc của AB tại B , đường vuông góc của AC tại C và đường tròn O
b) Vì P đối xứng với D qua AB ==> BD=PB ; tương tự DC=CQ
GỌI GIAO ĐIỂM CỦA HD VÀ BC LÀ K
vì BHCD là HBH ==> DK=KH ==> \(\frac{DK}{KH}=1\)
ÁP DỤNG TA-LÉT ĐẢO VÀO 2 TAM GIÁC DHP VÀ DHQ LÀ RA
a) Giả sử đã tìm được điểm D trên cung BC sao cho tứ giác BHCD là hình bình hành. Khi đó: BD//HC; CD//HB vì H là trực tâm tam giác ABC nên CH và BH
BD và CD.
Do đó: ABD = 900 và ACD = 900 .
Vậy AD là đường kính của đường tròn tâm O
Ngược lại nếu D là đầu đường kính AD của đường tròn tâm O thì tứ giác BHCD là hình bình hành.
b) Vì P đối xứng với D qua AB nên APB = ADB
nhưng ADB =ACB , ADB = ACB. Do đó: APB = ACB
Mặt khác: AHB + ACB = 1800 APB + AHB = 1800
Tứ giác APBH nội tiếp được đường tròn nên PAB = PHB
Mà PAB = DAB do đó: PHB = DAB
Chứng minh tương tự ta có: CHQ = DAC
Vậy PHQ = PHB + BHC + CHQ = BAC + BHC = 1800
Ba điểm P; H; Q thẳng hàng.
c) Ta thấy APQ là tam giác cân đỉnh A
Có AP = AQ = AD và PAQ = 2BAC không đổi nên cạnh đáy PQ đạt