Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tứ giác CDME có
^MEC = ^MDC = 900
mà 2 góc này kề, cùng nhìn cạnh MC
Vậy tứ giác CDME là tứ giác nt 1 đường tròn
b, bạn ktra lại đề
A B C M N O S D H E F K P Q I J
a) Ta thấy \(\widehat{AMN}=\widehat{ABH}+\frac{1}{2}\widehat{BHQ}=\widehat{ACH}+\frac{1}{2}\widehat{CHP}=\widehat{ANM}\). Suy ra \(\Delta AMN\) cân tại A.
b) Dễ thấy tứ giác BEFC và BQPC nội tiếp, suy ra \(\widehat{HEF}=\widehat{HCB}=\widehat{HPQ}\), suy ra EF || PQ
Hiển nhiên \(OA\perp PQ\). Do đó \(OA\perp EF.\)
c) Gọi MK cắt BH tại I, NK cắt CH tại J, HK cắt BC tại S.
Vì A,K là trung điểm hai cung MN của (AMN) nên AK là đường kính của (AMN)
Suy ra \(MK\perp AB,NK\perp AC\)hay MK || CH, NK || BH
Ta có \(\Delta BHQ~\Delta CHP\), theo định lí đường phân giác và Thales thì:
\(\frac{IH}{IB}=\frac{MQ}{MB}=\frac{NP}{NC}=\frac{JH}{JC}\). Suy ra IJ || BC
Cũng từ MK || CH, NK || BH suy ra HIKJ là hình bình hành hay HK chia đôi IJ
Do vậy HK chia đôi BC theo bổ đề hình thang. Vậy HK đi qua S cố định.
A B C D M N O I K P Q H S R L T E G
1) Do DN // AB nên ^DNC = ^BAC (Đồng vị). Mà ^BAC = ^DBC nên ^DNC = ^DBC => Tứ giác BNCD nội tiếp
Suy ra 5 điểm B,O,N,C,D cùng thuộc 1 đường tròn => ^BND = ^BOD = ^COD = ^CND
Ta có: DN // AB => ^BND = ^ABN. ^CND = ^NAB => ^NBA = ^NAB => \(\Delta\)ANB cân tại N (đpcm).
2) Ta có: ^DCM = ^DNB = ^DNC => \(\Delta\)DMC ~ \(\Delta\)DCN => DC2 = DM.DN. Dễ thấy: DC2 = DI.DA
Suy ra: DM.DN = DI.DA => Tứ giác AIMN nội tiếp => ^IMK = ^IAN = ^IBC => \(\Delta\)MIK ~ \(\Delta\)MKB (g.g)
=> KM2 = KI.KB. Ta lại có: ^KDI = ^IAB = ^KBD => \(\Delta\)IKD ~ \(\Delta\)DKB (g.g) => KD2 = KI.KB
Từ đó: KM2 = KD2 => KM = KD = DM/2. Do G là trung điểm KD nên \(\frac{GM}{GK}=3\) (1)
Gọi giao điểm của tia AD và tia ND là R. Theo hệ quả ĐL Thales: \(\frac{QB}{QM}=\frac{AB}{MR}\) (2)
Nếu ta gọi giao của PI với BC là V, theo phép vị tự thì I là trung điểm của PV. Từ đó suy ra: GM=GR
Mà GD = GK = GM/3 nên DK = MR/3. Lại áp dụng hệ quả ĐL Thales: \(\frac{IK}{IB}=\frac{DK}{AB}=\frac{MR}{3AB}\) (3)
Từ (1),(2),(3) suy ra: \(\frac{GM}{GK}.\frac{QB}{QM}.\frac{IK}{IB}=3.\frac{AB}{MR}.\frac{MR}{3AB}=1\). Theo đk đủ của ĐL Mélelaus thì 3 điểm Q,I,G tương ứng nằm trên các cạnh BM,BK,KM của \(\Delta\)BKM thẳng hàng (đpcm).
3) Gọi (HCS) cắt (O) tại điểm thứ hai là T. E là giao điểm của OD và BC.
Ta thấy: ^TBD = ^TCB = ^THS = ^THD (Góc tạo bởi tiếp tuyến và dây + Góc nội tiếp) => Tứ giác BHTD nội tiếp
Từ đó: 5 điểm B,H,E,T,D cùng thuộc 1 đường tròn => ^BTD = ^BED = 900
Mặt khác: ^DTE = 1800 - ^DBE = 1800 - ^BAC = ^BTC => ^DTE = ^BTC => ^BTD = ^CTE
Suy ra: ^CTE = 900 => T nằm trên đường tròn (CE) cố định. Mà T cũng thuộc (O) cố định.
Nên T là điểm cố định. Do đó: Dây CT của đường tròn (HCS) cố định
=> Tâm L của (HCS) luôn nằm trên đường trung trực của đoạn CT cố định (đpcm).
a: góc CDM=góc CEM=90 độ
=>CDEM nội tiếp
b: Xet ΔMEA vuông tại E và ΔMDB vuông tại D có
góc EMA chung
=>ΔMEA đồng dạng với ΔMDB
=>ME/MD=MA/MB
=>ME*MB=MA*MD
a. góc CDM=góc CEM=90 độ
=>CDEM nội tiếp
b. Xet ΔMEA vuông tại E và ΔMDB vuông tại D có
góc EMA chung
=>ΔMEA đồng dạng với ΔMDB
=>ME/MD=MA/MB
=>ME*MB=MA*MD
Tham khảo
https://hoc24.vn/cau-hoi/cho-tam-giac-abc-nhon-noi-tiep-duong-tron-o-tren-canh-bc-lay-diem-d-sao-cho-abc-cad-k-la-duong-tron-noi-tiep-tam-giac-adc-e-la-chan-duong-p.205346682394
d: \(SA^2=SB\cdot SC\)
\(SE^2=SB\cdot SC\)
=>SA=SE
Xét ΔOAS và ΔOES có
OA=OE
SA=SE
OS chung
Do đó: ΔOAS=ΔOES
=>\(\widehat{OAS}=\widehat{OES}\)
mà \(\widehat{OAS}=90^0\)
nên \(\widehat{OES}=90^0\)
=>E nằm trên đường tròn đường kính SO
mà S,A,O,D cùng thuộc đường tròn đường kính SO(cmt)
nên E nằm trên đường tròn (SAOD)