Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Tâm I của đường tròn ngoại tiếp tứ giác BFEC là trung điểm của BC
b) Xét ΔSFB và ΔSCE có
\(\widehat{FSB}\) chung
\(\widehat{SFB}=\widehat{SCE}\left(=180^0-\widehat{BFE}\right)\)
Do đó: ΔSFB∼ΔSCE(g-g)
Suy ra: \(\dfrac{SF}{SC}=\dfrac{SB}{SE}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(SE\cdot SF=SB\cdot SC\)(đpcm)
a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
góc EAH+góc ACB=90 độ
góc EBC+góc ACB=90 độ
=>góc EAH=góc EBC
b: AK cắt EF tại M
AK cắt BC tại N
AH cắt (O) tại K
=>HM//AB và QN//AB
=>HM//QN
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)
Giải:
Câu a)
- 2 tam giác vuông ∆ADC và ∆BEC, có góc ADC = góc BEC = 90°, và 2 tam giác vuông này có chung góc C. Từ đây, suy ra => tam giác ∆ADC và tam giác ∆BEC đồng dạng (theo dạng tam giác đồng dạng: góc - góc - góc). Vì ∆ADC và ∆BEC đồng dạng nhau, nên ta có tỷ lệ: DC:EC = AC:BC.
Từ đây, suy ra: DC:AC = CE:BC (1).
Vì tam giác ∆ABC và ∆EDC có chung góc C, và vì kết quả ở (1), nên ta suy ra: ∆ABC và ∆EDC đồng dạng. Từ đây, ta biết được: góc DEC = ABC và góc EDC = góc BAC.
Mà, góc AED + góc DEC = 180° => góc AED + góc ABC = 180° => tứ giác ABDE nội tiếp được một đường tròn (Theo tính chất của tứ giác nội tiếp: 2 góc đối bù nhau).
Câu b)
Chứng minh tương tự như câu a), ta sẽ có:
∆DEC đồng dạng ∆DBF đồng dạng ∆AEF (1)
Từ (1), ta suy ra: góc AEF = góc DEC, mà góc BEA = góc BEC = 90°, nên ta tính được góc BEF = góc BED, suy ra => BE là đường phân giác góc DEF.
Giải tương tự như trên, ta sẽ chứng minh được AD, CF lần lượt là đường phân giác của các góc FDE và góc DFE.
Từ đó, suy ra => H là tâm đường tròn nội tiếp tam giác DEF.
câu c theo nha
câu c nha