Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Xét tam giác ABE và tam giác ACF có:
Góc AEB=góc AFC(=90 độ)
Góc A chung
=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)
b)
Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)
=>\(\frac{AB}{AC}=\frac{AE}{AF}\)
Xét tam giác AFE và tam giác ACB có:
Góc A chung(gt)
\(\frac{AB}{AC}=\frac{AE}{AF}\)
=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)
c)
H ở đou ra vại? :))
a)Xét tam giác AMC và tam giác A'MB có:
AM=A'M(gt)
góc AMC=góc A'MB(đối đỉnh)
MC=MB(gt)
\(\Rightarrow\)tam giác AMC =tam giác A'MB(c-g-c)
\(\Rightarrow\)BA'=AC\(\Rightarrow\)BA'=AG(do ACFG là hình vuông)(1)
Mặt khác do tam giác AMC=tam giác A'MB suy ra góc MBA'=góc MCA mà 2 góc này ở vị trị so le suy ra AC//BA'suy ra góc ABA'+góc BAC=180độ
mặt khác góc BAC+gocsEAG=180độ suy ra góc ABA'=góc EAG(2)
mà AB=AE(3)
Từ (1),(2)và (3) suy ra tam giác ABA'= tam giác AEG(c-g-c)suy ra EG =AA'\(\Rightarrow\)đpcm
1: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc DAB chung
=>ΔADB đồng dạng với ΔAEC
2: Xet ΔHEB vuông tại E và ΔHDC vuông tại D có
góc EHB=góc DHC
=>ΔHEB đồng dạng với ΔHDC
=>HE/HD=HB/HC
=>HE*HC=HB*HD
3: ΔAMC vuông tại M có MD vuông góc AC
nên AD*AC=AM^2
ΔANB vuông tại N có NE vuông góc AB
nên AE*AB=AN^2
=>AM=AN
a: Xét tứ giác BHCD có
BH//CD
BD//CH
=>BHCD là hình bình hành
b: Xét ΔAKB vuông tại K và ΔAIC vuông tại I có
góc KAB chung
=>ΔAKB đồng dạng với ΔAIC
=>AK/AI=AB/AC
=>AK*AC=AB*AI; AK/AB=AI/AC
c: Xét ΔAKI và ΔABC có
AK/AB=AI/AC
góc KAI chung
=>ΔAKI đồng dạng với ΔABC