K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2021

Bài 1: 

a) Xét tam giác ABE và tam giác ACF có:

Góc AEB=góc AFC(=90 độ)

Góc A chung

=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)

b)

Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)

=>\(\frac{AB}{AC}=\frac{AE}{AF}\)

Xét tam giác AFE và tam giác ACB có:

Góc A chung(gt)

\(\frac{AB}{AC}=\frac{AE}{AF}\)

=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)

c)

H ở đou ra vại? :))

22 tháng 8 2021

BE vs CF cắt nhau ở h còn j bạn;-;

15 tháng 7 2016

a)Xét tam giác AMC và tam giác A'MB có:

AM=A'M(gt)

góc AMC=góc A'MB(đối đỉnh)

MC=MB(gt)

\(\Rightarrow\)tam giác AMC =tam giác A'MB(c-g-c)

\(\Rightarrow\)BA'=AC\(\Rightarrow\)BA'=AG(do ACFG là hình vuông)(1)

Mặt khác do tam giác AMC=tam giác A'MB suy ra góc MBA'=góc MCA mà 2 góc này ở vị trị so le suy ra AC//BA'suy ra góc ABA'+góc BAC=180độ

mặt khác góc BAC+gocsEAG=180độ suy ra góc ABA'=góc EAG(2)

mà AB=AE(3)

Từ (1),(2)và (3) suy ra tam giác ABA'= tam giác AEG(c-g-c)suy ra EG =AA'\(\Rightarrow\)đpcm

1: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc DAB chung

=>ΔADB đồng dạng với ΔAEC

2: Xet ΔHEB vuông tại E và ΔHDC vuông tại D có

góc EHB=góc DHC

=>ΔHEB đồng dạng với ΔHDC

=>HE/HD=HB/HC

=>HE*HC=HB*HD

3: ΔAMC vuông tại M có MD vuông góc AC

nên AD*AC=AM^2

ΔANB vuông tại N có NE vuông góc AB

nên AE*AB=AN^2

=>AM=AN

a: Xét tứ giác BHCD có

BH//CD
BD//CH

=>BHCD là hình bình hành

b: Xét ΔAKB vuông tại K và ΔAIC vuông tại I có

góc KAB chung

=>ΔAKB đồng dạng với ΔAIC
=>AK/AI=AB/AC

=>AK*AC=AB*AI; AK/AB=AI/AC

c: Xét ΔAKI và ΔABC có

AK/AB=AI/AC

góc KAI chung

=>ΔAKI đồng dạng với ΔABC