K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
\(1,\)Gọi I là tâm đường tròn đường kính BC thì I là trung điểm BC và \(MI=IN=BI=CI=\dfrac{1}{2}BC\) (bán kính cùng đường tròn)
\(\Rightarrow\Delta BNC\) vuông tại N và \(\Delta CMB\) vuông tại N
Vậy \(\widehat{BMC}=\widehat{BNC}=90\) độ
\(2,\)Ta có \(H=BM\cap CN\)
Mà BM, CN là đường cao tam giác ABC
Suy ra H là trực tâm
\(\Rightarrow AH\) là đường cao thứ 3
\(\Rightarrow AH\perp BC\)
\(3,\) Gọi giao điểm của tiếp tuyến tại N và AH là K, AH cắt BC tại E.
Ta có \(\widehat{KNH}+\widehat{INH}=90\)
Mà \(\widehat{INH}=\widehat{NCI}\left(NI=IC\right)\)
\(\Rightarrow\widehat{KNH}+\widehat{NCI}=90\)
Mà \(\widehat{NCI}+\widehat{CHE}=90\)
\(\Rightarrow\widehat{KNH}=\widehat{CHE}\)
Mà \(\widehat{CHE}=\widehat{NHK}\left(đđ\right)\)
\(\Rightarrow\widehat{KNH}=\widehat{NHK}\)
\(\Rightarrow\Delta NHK\) cân tại K\(\Rightarrow NK=KH\left(1\right)\)
Ta có \(\widehat{KNH}+\widehat{KNA}=90;\widehat{KHN}+\widehat{NAH}=90\)
\(\Rightarrow\widehat{ANK}=\widehat{NAK}\Rightarrow NK=AK\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow NK=KH=AK\)
\(\Rightarrow\)Đfcm
Tick plzzz, nghĩ nát óc đó
1: Xét (O) có
\(\widehat{BNC}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{BNC}=90^0\)
Xét (O) có
\(\widehat{BMC}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{BMC}=90^0\)
2: Xét ΔABC có
BM là đường cao ứng với cạnh AC
CN là đường cao ứng với cạnh AB
BM cắt CN tại H
Do đó: H là trực tâm của ΔABC
Suy ra: AH\(\perp\)BC