K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2020

Hỏi đáp ToánHỏi đáp Toán

4 tháng 1 2020

Máy tính vẽ hình không chuẩn lắm nên mk ko vẽ nhé

Xét \(\Delta BMI\)\(\Delta CMH\) có :

\(BM=CM\left(gt\right)\)

\(\widehat{BMI}=\widehat{CMH}\left(đđ\right)\)

\(MI=MH\left(gt\right)\)

\(\rightarrow\Delta BMI=\Delta CMH\left(c-g-c\right)\)

\(\rightarrow\left\{{}\begin{matrix}BI=CH\\\widehat{B_1}=\widehat{C_1}\end{matrix}\right.\)

\(\widehat{C_1}+\widehat{CBF}=90^O\)

\(\rightarrow\widehat{FBI}=90^Ohay\widehat{ABI}=90^O\)

b .\(\Delta FBC\) vuông tại F có \(FM\) là đường trung tuyến

\(\rightarrow FM=\frac{BC}{2}\)(1)

CM tương tự : \(EM=\frac{BC}{2}\)(2)

Từ (1) và (2) suy ra :

\(\rightarrow FM=EM\)

\(\rightarrow\) \(\Delta MFE\) cân tại M

\(\rightarrow\widehat{MFE}=\widehat{MEF}\)

31 tháng 12 2021

a: Xét tứ giác BHCI có

M là trung điểm của BC

M là trung điểm của HI

Do đó: BHCI là hình bình hành

Suy ra: CI=BH

20 tháng 12 2021

a: Xét tứ giác BHCK có

M là trung điểm của BC

M là trung điểm của HK

Do đó: BHCK là hình bình hành

14 tháng 12 2022

a: \(S_{CAB}=\dfrac{4\cdot6}{2}=2\cdot6=12\left(cm^2\right)\)

b: Xét tứ giác BHCK có

M là trung điểm chung của BC và HK

nên BHCK là hình bình hành

c: BHCK là hình bình hành

nên BH//CK; BK//CH

=>BK vuông góc với BA,CK vuông góc với CA

1 tháng 11 2020

a) Chứng minh : BHCK là hình bình hành 

Xét tứ giác BHCK có :                MH = MK = HK/2

                                                    MB = MI = BC/2 

Suy ra : BHCK là hình bình hành 

b) BK vuông góc AB và CK vuông góc AC

Vì BHCK là hình bình hành ( cmt ) 

Suy ra : BK // HC và CK // BH ( tính chất hình bình hành )

mà CH vuông góc AB = F và BH vuông góc AC = E ( gt )

Suy ra : BK vuông góc AB và CK vuông góc AC ( Từ vuông góc đến // )

c) Chứng minh : BIKC là hình thang cân 

Vì I đối xứng với H qua BC nên BC là đường trung bình của HI 

Mà M thuộc BC    Suy ra : MH = MI ( tính chất đường trung trực ) 

mà MH = MK = HK/2 (gt)

Suy ra : MI = MH = MK = 1/2 HC 

Suy ra : Tam giác HIK vuông góc tại I 

mà BC vuông góc HI (gt)

Suy ra : IC // BC 

Suy ra : BICK là hình thang  (1) 

Ta có : BC là đường trung trực của HI (cmt) 

Suy ra : CI = CH 

1 tháng 11 2020

Tiếp ý c 

mà CH = BK ( vì BKCH là hình bình hành) 

Suy ra : BK = CI (2)

Từ ( 1) và (2) Suy ra : BICK là hình thang cân (dấu hiệu nhận biết )

d) Giả sử GHCK là hình thang cân 

Suy ra : Góc HCK = Góc GHC

mà góc HCK + góc C1 = 90 độ 

      góc GHC + góc C2 = 90 độ 

Suy ra : Góc C1= góc C2 

Suy ra : CF là đường cao đồng thời là đường phân giác của tam giác ABC 

Suy ra : Tam giác ABC cân tại C 

18 tháng 12 2021

a: Xét tứ giác BHCK có

M là trung điểm của BC

M là trung điểm của HK

Do đó: BHCK là hình bình hành

18 tháng 12 2021

a: Xét tứ giác BHCK có

M là trung điểm của BC

M là trung điểm của HK

Do đó: BHCK là hình bình hành

a: Xét tứ giác BHCK có

M là trung điểm chung của BC và HK

=>BHCK là hình bình hành

b: Xét tứ giác AFHE có

\(\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0\)

=>AFHE là tứ giác nội tiếp đường tròn đường kính AH

=>AFHE nội tiếp (I)

=>IF=IE

=>I nằm trên đường trung trực của FE(1)

Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)

nên BFEC là tứ giác nội tiếp đường tròn đường kính BC

=>BFEC nội tiếp (M)

=>MF=ME

=>M nằm trên đường trung trực của FE(2)

Từ (1) và (2) suy ra IM là đường trung trực của FE

=>IM\(\perp\)FE

Xét ΔHAK có

I,M lần lượt là trung điểm của HA,HK

=>IM là đường trung bình của ΔHAK

=>IM//AK

Ta có: IM//AK

IM\(\perp\)FE

Do đó: FE\(\perp\)AK

18 tháng 1

làm hơi dài với mình cần phần c thôi nhé

23 tháng 12 2020

a) Xét tứ giác BHCK có 

M là trung điểm của đường chéo BC(gt)

M là trung điểm của đường chéo HK(H và K đối xứng nhau qua M)

Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Ta có: BHCK là hình bình hành(cmt)

nên BK//CH và BH//CK(Các cặp cạnh đối trong hình bình hành BHCK)

Ta có: BK//CH(cmt)

nên BK//CF

Ta có: BK//CF(cmt)

CF⊥AB(gt)

Do đó: BK⊥BA(Định lí 2 từ vuông góc tới song song)

Ta có: CK//BH(cmt)

nên CK//BE

Ta có: CK//BE(cmt)

BE⊥AC(gt)

Do đó: CK⊥AC(Định lí 2 từ vuông góc tới song song)

c) Vì H và I đối xứng nhau qua BC

nên BC là đường trung trực của HI

⇔C nằm trên đường trung trực của HI

hay CH=CI(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: BHCK là hình bình hành(cmt)

nên CH=BK(Hai cạnh đối trong hình bình hành BHCK)(2)

Từ (1) và (2) suy ra CI=BK

Gọi O là giao điểm của BC và HI

mà BC là đường trung trực của HI

nên O là trung điểm của HI

Xét ΔHIK có 

O là trung điểm của HI(cmt)

M là trung điểm của HK(H và K đối xứng nhau qua M)

Do đó: OM là đường trung bình của ΔHIK(Định nghĩa đường trung bình của tam giác)

⇒OM//IK(Định lí 2 về đường trung bình của tam giác)

hay IK//BC

Xét tứ giác BIKC có IK//BC(cmt)

nên BIKC là hình thang có hai đáy là IK và BC(Định nghĩa hình thang)

Hình thang BIKC(IK//BC) có IC=BK(cmt)

nên BIKC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

20 tháng 3 2021

a) Xét tứ giác BHCK có 

M là trung điểm của đường chéo BC(gt)

M là trung điểm của đường chéo HK(H và K đối xứng nhau qua M)

Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Ta có: BHCK là hình bình hành(cmt)

nên BK//CH và BH//CK(Các cặp cạnh đối trong hình bình hành BHCK)

Ta có: BK//CH(cmt)

nên BK//CF

Ta có: BK//CF(cmt)

CF⊥AB(gt)

Do đó: BK⊥BA(Định lí 2 từ vuông góc tới song song)

Ta có: CK//BH(cmt)

nên CK//BE

Ta có: CK//BE(cmt)

BE⊥AC(gt)

Do đó: CK⊥AC(Định lí 2 từ vuông góc tới song song)

c) Vì H và I đối xứng nhau qua BC

nên BC là đường trung trực của HI

⇔C nằm trên đường trung trực của HI

hay CH=CI(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: BHCK là hình bình hành(cmt)

nên CH=BK(Hai cạnh đối trong hình bình hành BHCK)(2)

Từ (1) và (2) suy ra CI=BK

Gọi O là giao điểm của BC và HI

mà BC là đường trung trực của HI

nên O là trung điểm của HI

Xét ΔHIK có 

O là trung điểm của HI(cmt)

M là trung điểm của HK(H và K đối xứng nhau qua M)

Do đó: OM là đường trung bình của ΔHIK(Định nghĩa đường trung bình của tam giác)

⇒OM//IK(Định lí 2 về đường trung bình của tam giác)

hay IK//BC

Xét tứ giác BIKC có IK//BC(cmt)

nên BIKC là hình thang có hai đáy là IK và BC(Định nghĩa hình thang)

Hình thang BIKC(IK//BC) có IC=BK(cmt)

nên BIKC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

19 tháng 10 2021

a: Ta có: H và P đối xứng nhau qua BC

nên BC là đường trung trực của HP

Suy ra: D là trung điểm của HP

Xét ΔHPQ có 

D là trung điểm của HP

M là trung điểm của HQ

Do đó: DM là đường trung bình của ΔHPQ

Suy ra: DM//PQ

hay PQ//BC

Xét tứ giác DMQP có DM//PQ

nên DMQP là hình thang

mà \(\widehat{PDM}=90^0\)

nên DMQP là hình thang vuông