Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\widehat{DCE}+\widehat{ECF}=180^o\)
=> \(\widehat{ECF}=90^o\)
Xét t/g DEC và t/g BFC có
EC = FC (GT)
\(\widehat{DCE}=\widehat{BCF}=90^o\)
DC = BC (do ABCD là hình vuông)
=> t/g DEC = t/g BFC (c.g.c)
=> DE = BF (2 cạnh t/ứ(
b/ Xét t/g BEH và t/g DEC có
\(\widehat{BEH}=\widehat{DEC}\) (đối đỉnh)
\(\widehat{EBF}=\widehat{EDC}\) (do t/g BFC = t/g DEC)
\(\Rightarrow\Delta BEH\sim\Delta DEC\) (g.g)
=> \(\widehat{BHE}=\widehat{DCB}=90^o\)
=> \(DE\perp BF\)
Xét t/g BDF có
DE ⊥ BF
BC ⊥ DF
DE cắt BC tại E
=> E là trực tâm t/g BDF
=> .... đpcm
c/ Xét t/g CEF có CE = CF ; M là trung điểm EF
=> CM ⊥ EF
=> \(\widehat{KMC}=90^o\)
Tự cm OKMC làhcn
=> OC = KM => AO = KM
Mà AO // KM (cùng vuông góc vs BD)
=> AOMK là hbh
=> OM // AK
a) Áp dụng định lý Talet vào tam giác ABC có DE//BC
\(\frac{AB}{BD}=\frac{AC}{CE}\Rightarrow\frac{CE}{BD}=\frac{AC}{AB}\)
mà BD=CF (gt) \(\Rightarrow\frac{CE}{CF}=\frac{AC}{AB}\left(1\right)\)
Ta có: DE//BC mà B \(\in\)BC
=> DE//MC
\(\Rightarrow\frac{MD}{MF}=\frac{CE}{CF}\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\frac{MD}{MF}=\frac{AC}{AB}\left(đpcm\right)\)
b) BC=8cm, BD=5cm, DE=3cm
Áp dụng định lý Talet vào tam giác ABC có: DE//BC
\(\Rightarrow\frac{DF}{BC}=\frac{AD}{AB}=\frac{AE}{AC}\)
\(\Rightarrow\frac{DE}{BC}=\frac{AD}{AB}=\frac{AB-BD}{AB}\)
\(\Leftrightarrow\frac{AB-5}{AB}=\frac{3}{8}\)
<=> 3AB=8AB-40
<=> 5AB=40
<=> AB=8cm
AB=BC=8cm => Tam giác ABC cân (đpcm)