K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2020

a/ \(\widehat{DCE}+\widehat{ECF}=180^o\)

=> \(\widehat{ECF}=90^o\)

Xét t/g DEC và t/g BFC có

EC = FC (GT)

\(\widehat{DCE}=\widehat{BCF}=90^o\)

DC = BC (do ABCD là hình vuông)

=> t/g DEC = t/g BFC (c.g.c)

=> DE = BF (2 cạnh t/ứ(

b/ Xét t/g BEH và t/g DEC có

\(\widehat{BEH}=\widehat{DEC}\) (đối đỉnh)

\(\widehat{EBF}=\widehat{EDC}\) (do t/g BFC = t/g DEC)

 \(\Rightarrow\Delta BEH\sim\Delta DEC\) (g.g)

=> \(\widehat{BHE}=\widehat{DCB}=90^o\)

=> \(DE\perp BF\)

Xét t/g BDF có

DE ⊥ BF

BC ⊥ DF

DE cắt BC tại E

=> E là trực tâm t/g BDF

=> .... đpcm

c/ Xét t/g CEF có CE = CF ; M là trung điểm EF

=> CM ⊥ EF

=> \(\widehat{KMC}=90^o\)

Tự cm OKMC làhcn

=> OC = KM => AO = KM

Mà AO // KM (cùng vuông góc vs BD)

=> AOMK là hbh

=> OM // AK

22 tháng 3 2021

undefined

6 tháng 3 2020

giúp mik vs

22 tháng 3 2020

A B C D E M F

a) Áp dụng định lý Talet vào tam giác ABC có DE//BC

\(\frac{AB}{BD}=\frac{AC}{CE}\Rightarrow\frac{CE}{BD}=\frac{AC}{AB}\)

mà BD=CF (gt) \(\Rightarrow\frac{CE}{CF}=\frac{AC}{AB}\left(1\right)\)

Ta có: DE//BC mà B \(\in\)BC

=> DE//MC

\(\Rightarrow\frac{MD}{MF}=\frac{CE}{CF}\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\frac{MD}{MF}=\frac{AC}{AB}\left(đpcm\right)\)

b) BC=8cm, BD=5cm, DE=3cm

Áp dụng định lý Talet vào tam giác ABC có: DE//BC

\(\Rightarrow\frac{DF}{BC}=\frac{AD}{AB}=\frac{AE}{AC}\)

\(\Rightarrow\frac{DE}{BC}=\frac{AD}{AB}=\frac{AB-BD}{AB}\)

\(\Leftrightarrow\frac{AB-5}{AB}=\frac{3}{8}\)

<=> 3AB=8AB-40

<=> 5AB=40

<=> AB=8cm

AB=BC=8cm => Tam giác ABC cân (đpcm)