Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kẻ đường cao AH của tam giac cân ABC ta có AH đồng thời là đường phân giác của góc BAC => \(AH\perp AM\)
mà \(AH\perp BC=>MN//BC\)
zì \(\widehat{BAH}=\widehat{HAC}=>\widehat{BAM}=\widehat{CAN}\)
do đó \(\widehat{MAC}=\widehat{NAB}\)(1)
mặt khác theo giả thiết ta có
\(AM.AN=AB^2=>\frac{AM}{AB}=\frac{AB}{AN}\)
mà \(AB=AC\left(gt\right)\Rightarrow\frac{AM}{AC}=\frac{AB}{AM}\left(2\right)\)
từ (1) zà 2 => \(\Delta ANB~\Delta ACM\left(c.g.c\right)\)
a) Xét \(\Delta ABC\) và \(\Delta ADB\) có:
\(\widehat{A}\) chung
\(\widehat{ACB}=\widehat{ABD}\) (gt)
\(\Rightarrow\Delta ABC\) đồng dạng với \(\Delta ADB\) (g-g)
\(\Rightarrow\dfrac{AB}{AD}=\dfrac{AC}{AB}\)
\(\Rightarrow AB^2=AC.AD\)