Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
.
3). Theo trên, ta có B E = C D mà C E = C F ⇒ B C = D F .
Ta có CI là đường phân giác góc BCD, nên I B I D = C B C D = D F B E ⇒ I B . B E = I D . D F .
Mà CO là trung trực EF và I ∈ C O , suy ra IE=IF.
Từ hai đẳng thức trên, suy ra I B . B E . E I = I D . D F . F I .
2). Từ Δ O B E = Δ O D C ⇒ O E = O C .
Mà CO là đường cao tam giác cân CEF , suy ra OE=OF.
Từ đó O E = O C = O F , vậy O là tâm đường tròn ngoại tiếp tam giác .
De chung minh M la tam duong tron bang tiep goc C cua tam giac ABC
\(\Rightarrow\widehat{MAI}=\widehat{MBI}=90^0\) => tu giac MAIN noi tiep
=> \(C'I.C'M=C'B.C'A\left(1\right)\)
Mat khac xet (O) ta cung co \(C'B.C'A=C'N.C'E\left(2\right)\)
Tu (1) va (2) suy ra \(C'I.C'M=C'E.C'N\)
suy ra tu giac MEIN noi tiep (*)
chung minh tuong tu cung co tu giac EINK noi tiep (**)
tu (*) va(**) ta co dpcm
2). Từ AD là phân giác B A C ^ suy ra DB=DC vậy DE vuông góc với BC tại trung điểm N của BC.
Từ 1). Δ B D M ∽ Δ B C F , ta có D M C F = B D B C .
Vậy ta có biến đổi sau D A C F = 2 D M C F = 2 B D B C = C D C N = D E C E (3).
Ta lại có góc nội tiếp A D E ^ = F C E ^ (4).
Từ 3 và 4, suy ra Δ E A D ∽ Δ E F C ⇒ E F C ^ = E A D ^ = 90 ° ⇒ E F ⊥ A C
1). Ta có góc nội tiếp bằng nhau B D M ^ = B C F ^ ( 1 ) và B M A ^ = B F A ^ suy ra 180 0 − B M A ^ = 180 0 − B F A ^ hay B M D ^ = B F C ^ (2).
Từ (1) và (2), suy ra Δ B D M ~ Δ B C F (g - g).
Gọi giao điểm khác D của hai đường tròn (BED);(CFD) là K'; K'I cắt EF tại L; DL cắt (I;ID) tại M khác D.
Ta thấy IE = IF; AI là phân giác ngoài của ^EAF, từ đây dễ suy ra 4 điểm A,E,I,F cùng thuộc một đường tròn
Vì 3 điểm D,F,E lần lượt thuộc các cạnh BC,CA,AB của \(\Delta\)ABC nên (BED);(CFD);(AFE) đồng quy (ĐL Miquel)
Hay điểm K' thuộc đường tròn (AIFE). Do vậy LI.LK' = LE.LF = LD.LM (= PL/(G) = PL/(I) )
Suy ra 4 điểm K',M,I,D cùng thuộc một đường tròn. Mà ID = IM nên ^IK'D = ^IK'M.
Đồng thời ^DIM = 1800 - ^DK'M = 1800 - ^EK'F + 2.^FK'D = ^BAC + 2.^ACB = 2.^AID
Suy ra IA vuông góc DM, từ đó M,L,D,A thẳng hàng (Vì IA cũng vuông góc AD)
Khi đó dễ thấy AL là phân giác ^BAC, K'L là phân giác ^EK'F, mà tứ giác AEK'F nội tiếp
Suy ra AEK'F là tứ giác điều hòa, từ đây AK' là đường đối trung của \(\Delta\)AEF
Suy ra K' trùng K. Kẻ tiếp tuyến Kx của (G), ta có ^BKx = ^EKx - ^EKB = ^EFK - ^EFD = ^BCK
Do đó (BKC) tiếp xúc với (G) tại K, tức KG đi qua tâm của (BKC) (1)
Gọi S là trung điểm cung lớn BC của (ABC). Có SB = SC và ^BKC = ^AED + ^AFD = 1800 - ^BSC/2
Suy ra S là tâm của đường tròn (BKC) (2)
Từ (1) và (2) suy ra KG luôn đi qua S cố định (Vì S là trung điểm cùng BC lớn cố định) (đpcm).
2) Theo 1). dễ thấy Δ B F A ∽ Δ B N P ⇒ Δ B N F ∽ Δ B P A ⇒ B N B P = F N A P (1).
Tương tự Δ C M E ∽ Δ C P A ⇒ C M C P = E M A P (2).
Từ (1) và (2), ta có B N C M ⋅ C P B P = F N E M và theo giả thiết F N E M = B N C M , suy ra C P = B P ⇒ A D là phân giác góc B A C ^ .
Trên EF lấy điểm G sao cho \(HG\perp OA\) (Định nghĩa lại điểm G)
Ta thấy đường tròn (HAC) và (O) đối xứng nhau qua AC, suy ra AOCK là hình thoi
Từ đó \(\widehat{OAM}=180^0-\widehat{AMK}=\widehat{AHK}=90^0-\widehat{ACH}=\widehat{BAC}\)
Suy ra \(\widehat{CAM}=\widehat{BAO}=\widehat{CAH}\) hay AC là phân giác của \(\widehat{HAM}\)
Vì MK là phân giác ngoài của \(\widehat{AMH}\) do K là điểm chính giữa cung AMH nên C là tâm bàng tiếp góc A của \(\Delta AHM\)
Do đó \(\frac{CE}{CA}=\frac{HE}{HA}\). Hoàn toàn tương tự \(\frac{BA}{BF}=\frac{HA}{HF}\)
Mặt khác AMHN là hình bình hành do (AKH),(ALH) đối xứng nhau qua trung điểm AH, đồng thời
\(\widehat{MAN}=\widehat{MHN}=\widehat{AHM}+\widehat{AHN}=180^0-\widehat{AOB}+180^0-\widehat{AOC}=2\widehat{BAC}=2\widehat{OAM}\)
Suy ra AO là phân giác của \(\widehat{MAN}\), mà \(HG\perp AO\) nên HG là phân giác ngoài của \(\widehat{MHN}\)
Do vậy \(\frac{GF}{GE}=\frac{HF}{HE}\). Vậy ta có \(\frac{CE}{CA}.\frac{BA}{BF}.\frac{GF}{GE}=1\), suy ra G,B,C thẳng hàng.