Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét trong tam giác BIC từ định lí tổng 3 góc của một tam giác bằng 10 độ
=> \(\widehat{BIC}=180^o-\widehat{IBC}-\widehat{ICB}\)\(=180^o-\frac{1}{2}\widehat{ABC}-\frac{1}{2}\widehat{ACB}\)( tính chất phân giác)
\(=180^o-\frac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)\)
Mà xét trong tam giác ABC cũng từ định lí tổng ba góc của một tam giác bằng 180 độ
=> \(\widehat{ABC}+\widehat{ACB}=180^o-\widehat{BCA}=180^o-60^o=120^o\)
=> \(\widehat{BIC}=180^o-\frac{1}{2}.120^o=120^o\)
b) Xét tam giác BEI và tam giác BFI
Hai tam giác này bằng nhau theo trường hợp góc cạnh góc (tự chứng minh)
=> \(\widehat{EIB}=\widehat{FIB}\)
Mà \(\widehat{EIB}=\widehat{DIC}=180^o-\widehat{BIC}=60^o\)
=> \(\widehat{BIF}=60^o\Rightarrow\widehat{CIF}=\widehat{BIC}-\widehat{BIF}=120^o-60^o=60^o\)
=> \(\widehat{CID}=\widehat{CIF}\)
Xét Tam giác IDC và tam giác IFC có:
IC chung
\(\widehat{CID}=\widehat{CIF}\)
\(\widehat{FIC}=\widehat{DIC}\)
=> \(\Delta CID=\Delta CIF\)(g-c-g)
k bạn ơi, giải giúp mik câu c đi bạn. mik giải đc 2 câu trên r
a: góc ABC+góc ACB=180-60=120 độ
=>góc IBC+góc ICB=60 độ
=>góc BIC=120 độ
b: góc BIE=góc DIC=60 độ
Xét ΔEBIvà ΔFBI có
BE=BF
góc EBI=góc FBI
BI chung
Do đo: ΔEBI=ΔFBI
=>góc EIB=góc FIB=60 độ
=>góc FIC=60 độ
=>góc FIC=góc DIC
Xét ΔFCI và ΔDCI có
góc FIC=góc DIC
IC chung
góc ICF=góc ICD
Do đó; ΔFCI=ΔDCI