K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2016

A B C D E I

Ta có : góc DBI = góc IBC ( vì BI là tia phân giác của góc ABC )

           góc DIB = góc IBC ( so le trong do DE // BC)

\(\Rightarrow\) góc DBI = góc DIB 

\(\Rightarrow\Delta BDI\)cân tại D

\(\Rightarrow BD=DI\left(1\right)\)

Và ta lại có: góc ECI = góc ICB ( vì CI là tia phân giác của góc ACB)

                  góc EIC = góc ICB ( so le trong do DE// BC)

\(\Rightarrow\Delta CEI\) cân tại E

\(\Rightarrow CE=EI\left(2\right)\)

\(Mà:DI+EI=DE\left(I\in DE\right)\)

\(Hay:BD+CE=DE\left(từ1\&2\right)\)

\(\Rightarrowđpcm\)

hình tự vẽ

ta có :

DE//BC (gt)

=>góc DIB = góc IBC( so le trong )

mà góc DBI= góc IBC (gt)

=>góc DIB= góc DBI

=>tam giác DIB là tam giác cân tại D

=>DI=DB

ta có : DE//BC(gt)

=>góc EIC = góc ICB (slt)

mà góc ECI = góc ICB (gt)

=>góc EIC = góc ECI

=>tam guacs EIC cân ở E

=>EI=EC

mà ED=IE+ID

=>ED=EC+BD 

7 tháng 1 2016

Ta có : DMB = MBC ( so le trong )

mà DBM = MBC ( giả thiết )

=> DMB = DBM

=> DMB là tam giác cân ( ĐPCM )

=> DM = DB*

Làm tương tư như trên , ta có ;

EMC = ECM

=> MEC là tam giác cân

=> EM = CE**

Từ **và** => DB + CE = DM  + ME = DE ( ĐPCM )

24 tháng 10 2017

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Ta có: DI // BC (giả thiết)

Suy ra:∠I1 =∠B1(so le trong) (1)

Lại có:∠B1 =∠B2 (2)

(vì BI là tia phân giác góc ABC)

Từ (1) và (2) suy ra:∠I1 =∠B2

=>∆BDI cân tại D =>BD=DI (3)

Mà IE // BC (gt) => ∠I2 =∠C1 (so le trong) (4)

Đồng thời: ∠C1=∠C2 (vì CI là phân giác của góc ACB) (5)

Từ (4) và (5) suy ra: ∠I2=∠C2. Suy ra ∠CEI cân tại E

Suy ra: CE = EI (6)

Từ (3) và (6) suy ra: BD + CE = DI + EI = DE

28 tháng 12 2016

 tôi còn đang phải đi hỏi đây đồ điên

5 tháng 2 2017

Có ai bít k giúp mìh với ^^!

5 tháng 2 2017

ta có \(\widehat{DIB}=\widehat{IBC}\)(cặp góc so le trong)

mà \(\widehat{DBI}=\widehat{IBC}\)(BI là đường phân giác của \(\widehat{B}\)

=>\(\widehat{DIB}=\widehat{DBI}\)=>\(\Delta DIB\)cân tại D (hai góc ở đáy bằng nhau)

=> ID=BD(1)

Chứng minh tương tự ta có IE=CE(2)

Lấy (1) cộng (2) vế theo vế ta có ID+IE=BD+CE =>DE=BD+CE 

3 tháng 6 2017

Ta có hình vẽ:

A B C I D E

Ta có: BI là pg góc B

=> góc DBI = góc IBC

Mà góc DIB = góc IBC (DE // BC)

=> góc DBI = góc DIB

=> tam giác BDI cân

=> BD = DI

Ta có: CI là phân giác góc C

=> góc ECI = góc ICB

Mà góc EIC = góc ICB (DE // BC)

=> góc ECI = góc EIC

=> tam giác CEI cân

=> CE = IE

Ta có: BD = DI; CE = IE

=> BD + CE = DI + IE

hay BD + CE = DE

hay DE = BD + CE

8 tháng 3 2018

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Ta có: DI // BC (gt)

Suy ra:∠I1 =∠B1(so le trong) (1)

Lại có:∠B1 =∠B2 (2)

(vì BI là yia phân giác góc B)

Từ (1) và (2) suy ra:∠I1 =∠B2

=>∆BDI cân tại D =>BD=DI (3)

Mà IE // BC (gt) =>∠I1 =∠C1 (so le trong) (4)

Đồng thời: ∠C1=∠C2 (vì CI là phân giác của góc C) (5)

Từ (4) và (5) suy ra: ∠C1=∠C2. Suy ra. ∠CEI cân tại E

Suy ra: CE = EI (hai cạnh tương ứng) (6)

Từ (3) và (6) suy ra: BD + CE = DI + EI = DE

Bài 5: 

a: Xét ΔDBI có \(\widehat{DIB}=\widehat{DBI}\)

nên ΔDBI cân tại D

hay DI=DB

b: Xét ΔCEI có \(\widehat{EIC}=\widehat{ECI}\)

nên ΔEIC cân tại E

c:Ta có: DI+IE=DE

nên DE=BD+CE

23 tháng 8 2021

b)CIE = ICB (2 góc so le trong, DE // BC)

mà ICB = ICE (IC là tia phân giác của ECB)

=> CIE = ICE

=> Tam giác EIC cân tại I

=> EI = EC

BID = IBC (2 góc so le trong, DE // BC)

mà IBC = IBD (IB là tia phân giác của DBC)

=> BID = IBD

=> Tam giác DIB cân tại D

=> DI = DB

DE = DI + IE = DB + CE