Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABC có
BE là đường cao ứng với cạnh AC
CF là đường cao ứng với cạnh AB
BE cắt CF tại H
Do đó: H là trực tâm của ΔABC
Suy ra: AH\(\perp\)BC
Xét tứ giác BHCD có
BH//CD
HC//BD
Do đó: BHCD là hình bình hành
b) Ta có: BHCD là hình bình hành(cmt)
nên Hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của HD
Ta có: ΔFBC vuông tại F(gt)
mà FM là đường trung tuyến ứng với cạnh huyền BC(gt)
nên \(FM=\dfrac{BC}{2}\)(1)
Ta có: ΔEBC vuông tại E(gt)
mà EM là đường trung tuyến ứng với cạnh huyền BC(gt)
nên \(EM=\dfrac{BC}{2}\)(2)
Từ (1) và (2) suy ra MF=ME
hay ΔEMF cân tại M(đpcm)
a: Xét ΔABC có
BE là đường cao
CF là đường cao
BE cắt CF tại H
Do đó: H là trực tâm của ΔBAC
Suy ra: AH\(\perp\)BC
Xét tứ giác BHCD có
BH//CD
CH//BD
Do đó: BHCD là hình bình hành
b: Ta có: BHCD là hình bình hành
nên Hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của HD
hay M,H,D thẳng hàng
Ta có: ΔEBC vuông tại E
mà EM là đường trung tuyến
nên EM=BC/2(1)
Ta có: ΔFBC vuông tại F
mà FM là đường trung tuyến
nên FM=BC/2(2)
Từ (1) và (2) suy ra ME=MF
hay ΔEMF cân tại M
1.
Câu 1:
a) $CD\perp AC, BH\perp AC$ nên $CD\parallel BH$
Tương tự: $BD\parallel CH$
Tứ giác $BHCD$ có hai cặp cạnh đối song song nhau (BH-CD và BD-CH) nên là hình bình hành
b)
Áp dụng bổ đề sau: Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền thì bằng 1 nửa cạnh huyền.
Ta có:
$BO$ là trung tuyến của tgv $ABD$ nên $BO=\frac{AD}{2}$
$CO$ là trung tuyến của tgv $ACD$ nên $CO=\frac{AD}{2}$
$\Rightarrow BO=CO(1)$
$OK\parallel AH, AH\perp BC$ nên $OK\perp BC(2)$
Từ $(1);(2)$ ta dễ thấy $\triangle OBK=\triangle OCK$ (ch-cgv)
$\Rightarrow BK=CK$ hay $K$ là trung điểm $BC$
Mặt khác:
$HBDC$ là hình bình hành nên $HD$ cắt $BC$ tại trung điểm mỗi đường. Mà $K$ là trung điểm $BC$ nên $K$ là trung điểm $HD$
Xét tam giác $AHD$ có $O$ là t. điểm $AD$, $K$ là t. điểm $HD$ nên $OK$ là đường trung bình của tam giác $AHD$ ứng với cạnh $AH$.
$\Rightarrow OK=\frac{AH}{2}=3$ (cm)
Sửa đề: Từ C,B kẻ các đường thẳng vuông góc với AC,AB cắt nhau tại K
a: CK vuông góc AC
BH vuông góc AC
Do đó: CK//BH
BK vuông góc AB
CH vuông góc AB
Do đó: BK//CH
Xét tứ giác BHCK có
BH//CK
BK//CH
Do đó: BHCK là hình bình hành
b: BHCK là hình bình hành
=>BC cắt HK tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của HK
=>H,M,K thẳng hàng
a: Xét tứ giác BHCD có
BH//CD
BD//CH
=>BHCD là hình bình hành
b: DH đi qua A
mà AH vuông góc BC(2)
nên DH vuông góc BC
DH đi qua A
mà DH cắt BC tại trung điểm của BC
nên AH cắt BC tại trung điểm của BC(1)
Từ (1), (2) suy ra ΔABC cân tại A
a) Ta thấy H là trực tâm tam giác ABC nên CH vuông góc AB. Suy ra DB song song CH.
Tương tự BH song song DC (Cùng vuông góc AC)
Vậy nên tứ giác BHCD là hình bình hành.
Do BHCD là hình bình hành nên \(\Delta BHC=\Delta CDB\left(c-g-c\right)\)
Lại có H' đối xứng với H qua BC nên \(\Delta BHC=\Delta BH'C\left(c-c-c\right)\)
Vậy thì \(\Delta CDB=\Delta BH'C\)
Gọi J là giao điểm của HH' và BC. Kẻ DK vuông góc BC tại K.
Khi đó ta có ngay H'J = KD. Vậy nên JKDH' là hình bình hành hay JK//H'D
Suy ra tứ giác BCDH' là hình thang.
Lại có : H'C = BD (Cùng bằng HC) nên BCDH' là hình thang cân.
b) Do BHCD là hình bình hành nên giao điểm của HD và BC là trung điểm mỗi đường. Ta gọi điểm đó là M.
Xét tam giác AHD có AM là trung tuyến, \(AG=\frac{2}{3}AM\) nên G là trọng tâm tam giác.
Vậy thì HG đi qua trung điểm AD, hay H, G, I thẳng hàng.
d) Để hình bình hành BHCD là hình thoi thì BH = HC. Vậy thì AH là đường cao đồng thời trung trực nên tam giác ABC là tam giác cân tại A.
Để hình bình hành BHCD là hình chữ nhật thì HC vuông góc BH. Lại có HC//BD nên BD//BH. Vậy thì BH trùng AB. Tương tự CH trùng AC.
Suy ra để BHCD là hình chữ nhật thì tam giác ABC vuông tại A.
a: Xét tứ giác BHCD có
BH//CD
BD//CH
DO đó: BHCD là hình bình hành
giúp với :<< CTV đôu rùi
T/l bằng hình ảnh nh .-.