Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. cho tam giác abc nhọn có AB=c , AC=b , BC=a
c/m : \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
Kẻ đường cao AH vuông góc với BC (H \(\in\) BC)
Xét tam giác AHB vuông tại H ta có: \(\sin B=\frac{AH}{c}\Leftrightarrow AH=sinB\times c\) (1)
Xét tam giác AHC vuông tại H ta có: \(\sin C=\frac{AH}{b}\Leftrightarrow AH=\sin C\times b\) (2)
(1),(2)\(\Rightarrow\sin C\times b=\sin B\times c\Leftrightarrow\frac{b}{\sin B}=\frac{c}{\sin C}\)
Rồi bạn chứng minh tương tự nha!
Dựng các đường cao như trên hình vẽ .
Ta có : \(\frac{a}{sinA}=\frac{a}{\frac{BH}{c}}=\frac{ac}{BK}\)
\(\frac{b}{sinB}=\frac{b}{\frac{AH}{c}}=\frac{bc}{AH}\)
\(\frac{c}{sinC}=\frac{c}{\frac{BK}{a}}=\frac{ac}{BK}=\frac{c}{\frac{AH}{b}}=\frac{bc}{AH}\)
\(\Rightarrow\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
Từ A ta kẻ AH vuông góc với BC, ta có ;
Sin B = \(\frac{Ah}{AB}\)
Sin C= \(\frac{Ah}{AC}\)
=> \(\frac{\sin B}{\sin C}=\frac{Ah}{Ab}=\frac{Ah}{AB}:\frac{Ah}{AC}=\frac{AC}{AB}\)
<=> \(\frac{\sin B}{\sin C}=\frac{B}{C}\)
<=> \(\sin B=\frac{C}{\sin C}\)
Tương tự ta có : \(\sin A=\frac{C}{\sin C}\)
=> \(\frac{\sin A=B}{\sin B=C}=\frac{C}{\sin C}\text{đ}pcm\)
Câu hỏi của lê thị thu huyền - Toán lớp 9 - Học toán với OnlineMath
kẻ CH vuông góc AB
Ta có : \(\sin A=\frac{CH}{AC};\sin B=\frac{CH}{BC}\)
do đó : \(\frac{\sin A}{\sin B}=\frac{BC}{AC}=\frac{a}{b}\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}\)( 1 )
Tương tự : \(\frac{b}{\sin B}=\frac{c}{\sin C}\) ( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\)
Kẻ AH vuông góc BC
Xét ΔAHB vuông tại H có sin B=AH/AB
=>AH=c*sin B
Xét ΔAHC vuông tại H có sin C=AH/AC
=>AH=AC*sin C=b*sin C
=>c*sin B=b*sin C
=>c/sinC=b/sinB
Kẻ BK vuông góc AC
Xét ΔABK vuông tại K có
sin A=BK/AB
=>BK=c*sinA
Xét ΔBKC vuông tại K có
sin C=BK/BC
=>BK/a=sin C
=>BK=a*sin C
=>c*sin A=a*sin C
=>c/sin C=a/sin A
=>a/sin A=b/sinB=c/sinC
a) Ta có: \(bc.sinA=ca.sinB=ab.sinC\left(=2S_{ABC}\right)\Rightarrow b.sinA=a.sinB;c.sinB=b.sinC\Rightarrow\frac{a}{sinA}=\frac{b}{sinB};\frac{b}{sinB}=\frac{c}{sinC}\Rightarrowđpcm\)
b) Ta có: \(a+b=2c\Leftrightarrow\frac{a}{c}+\frac{b}{c}=2\).
Từ câu a ta suy ra \(\frac{a}{c}=\frac{sinA}{sinC};\frac{b}{c}=\frac{sinB}{sinC}\).
Do đó: \(\frac{sinA}{sinC}+\frac{sinB}{sinC}=2\Rightarrow sinA+sinB=2sinC\) (đpcm).
Vẽ \(AH\perp BC\)
Ta có: \(\Delta AHB\perp H\)
\(\Rightarrow SinB=\frac{AH}{c}\)
Ta có: \(\Delta AHC\perp H\)
\(\Rightarrow SinC=\frac{AH}{b}\)
\(\Rightarrow\frac{\sin B}{\sin C}=\frac{AH}{c}:\frac{AH}{b}=\frac{AH}{c}.\frac{b}{AH}=\frac{b}{c}\)
\(\Rightarrow\frac{b}{\sin B}=\frac{c}{\sin C}\left(1\right)\)
Vẽ \(BK\perp AC\)
Ta có \(\Delta BKC\perp K\)
\(\Rightarrow SinC=\frac{BK}{a}\)
Ta có: \(\Delta AKB\perp K\)
\(\Rightarrow SinA=\frac{BK}{c}\)
\(\Rightarrow\frac{\sin A}{\sin C}=\frac{BK}{c}:\frac{BK}{a}=\frac{BK}{c}.\frac{a}{BK}=\frac{a}{c}\)
\(\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin C}\left(2\right)\)
Từ ( 1 ) và ( 2 ) suy ra \(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\left(đpcm\right)\)