Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a ) + Ta có \(\Delta ABE\) vuông tại E và \(\Delta ACF\) vuông tại F ( vì BE và CF là hai đường cao của\(\Delta\)ABC )
\(\Rightarrow cosBAC=\frac{AE}{AB}=\frac{AF}{AC}\Rightarrow AE.AC=AF.AB\)
+ ) Ta có : \(\Delta ADC\) vuông tại D có DK là đường cao
\(\Rightarrow AD^2=AK.AC\)
Lại có : \(\Delta ADB\) vuông tại D có DI là đường cao
\(\Rightarrow AD^2=AI.AB\)
Suy ra : \(AI.AB=AK.AC\)
b ) Ta có : \(\Delta ADB\) vuông tại D \(\Rightarrow\sin ABC=\frac{AD}{AB}\)
Lại co : \(\Delta CBE\) vuông tại E và \(\Delta AHE\) vuông tại E
Mà \(\widehat{AHE}=\widehat{C}\) ( cùng bù ^DHE ) \(\Rightarrow\sin ABC=\frac{BE}{BC}=\frac{AE}{AH}\)
\(\Rightarrow\frac{\cos BAC}{\sin ABC.\sin ACB}=\frac{AE}{AB}:\left(\frac{AD}{AB}.\frac{AE}{AH}\right)=\frac{AE}{AB}.\frac{AB.AH}{AD.AE}=\frac{AH}{AD}\)
Vậy \(AD.cosBAC=AH.\sin ABC.\sin ACB\left(đpcm\right)\)
\(\frac{1}{\sqrt{5a^2+2ab+2b^2}}=\frac{1}{\sqrt{4\left(a+\frac{b}{2}\right)^2+\left(a-b\right)^2}}\le\frac{1}{\sqrt{4\left(a+\frac{b}{2}\right)^2}}=\frac{1}{2\left(a+\frac{b}{2}\right)}=\frac{1}{2a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)
=> \(\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{9}\left(\frac{2}{a}+\frac{1}{b}\right)\)
CM tương tự => \(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{9}\left(\frac{2}{b}+\frac{1}{c}\right)\)
\(\frac{1}{\sqrt{5c^2+2ac+2a^2}}\le\frac{1}{9}\left(\frac{2}{c}+\frac{1}{a}\right)\)
Cộng vế với vế => \(\frac{1}{\sqrt{5a^2+2ab+2b^2}}+\frac{1}{\sqrt{5b^2+2bc+2c^2}}+\frac{1}{\sqrt{5c^2+2ac+2c^2}}\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{2}{3}\)
Dấu "=" xảy ra <=> \(a=b=c=\frac{3}{2}\)
b: góc HID+góc HKD=180 độ
=>HIDK nội tiếp
=>góc HIK=góc HDK
=>góc HIK=góc HCB
=>góc HIK=góc HEF
=>EF//IK
FH là phân giác góc DFE => HQ=HV
Chứng minh FQ=FV => FH là trung trực QV => FH vuông góc QV => QV song song AB => góc HIQ = HAF
Mà góc HAF = HEF nên góc HIQ = HEF => HEIQ nội tiếp => HIE = 90
Chứng minh tam giác DIS = DIE => IS=IE
1: Xét tứ giác BFEC có
góc BFC=góc BEC=90 độ
=>BFEC là tứ giác nội tiếp
2: ΔADB vuông tại D có DG vuông góc AB
nên AG*AB=AD^2
ΔADC vuông tại D
mà DH là đường cao
nên AH*AC=AD^2=AG*AB
=>AH/AB=AG/AC
=>ΔAHG đồng dạng với ΔABC
=>góc AGH=góc ACB=goc AFE
=>HG//FE
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC
Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)
ANH CS THỂ THAM KHẢO
a , b tự lm nha ( dễ mà )
c) Do II đối xứng với HH qua BC⇒IH⊥BCBC⇒IH⊥BC mà HD⊥BC,D∈BC
⇒I⇒I đối xứng với HH qua D⇒DD⇒D là trung điểm của HIHI
Và MM là trung điểm của HKHK
⇒DM⇒DM là đường trung bình ΔHIKΔHIK
⇒DM∥IK⇒DM∥IK
⇒BC∥IK⇒BC∥IK
⇒BCKI⇒BCKI là hình thang
ΔCHIΔCHI có CDCD vừa là đường cao vừa là đường trung tuyến
⇒ΔCHI⇒ΔCHI cân đỉnh CC
⇒CI=CH⇒CI=CH (*)
Mà tứ giác BHCKBHCK là hình bình hành ⇒CH=BK⇒CH=BK (**)
Từ (*) và (**) suy ra CI=BKCI=BK
Tứ giác BCKIBCKI là hình bình hành có 2 đường chéo CI=BKCI=BK
Suy ra BCIKBCIK là hình thang cân.
Tứ giác HGKCHGKC có GK∥HCGK∥HC (do BHCKBHCK là hình bình hành)
⇒HGKC⇒HGKC là hình thang có đáy là GK∥HCGK∥HC
a) +) Ta có \(\Delta ABE\) vuông tại E và \(\Delta ACF\) vuông tại F ( vì BE và CF là hai đường cao của ∆ABC)
\(\Rightarrow cosBAC=\frac{AE}{AB}=\frac{AF}{AC}\Rightarrow AE.AC=AF.AB\)
+) \(\Delta ADC\) vuông tại D có DK là đường cao \(\Rightarrow\)AD2 = AK.AC
Lại có \(\Delta ADB\) vuông tại D có DI là đường cao \(\Rightarrow\) AD2 = AI.AB
Suy ra: AI.AB = AK. AC
b) Ta có \(\Delta ADB\) vuông tại D \(\Rightarrow sinABC=\frac{AD}{AB}\)
Lại có \(\Delta CBE\) vuông tại E và \(\Delta AHE\) vuông tại E
mà \(\widehat{AHE}=\widehat{C}\)( cùng bù \(\widehat{DHE}\)) \(\Rightarrow sinABC=\frac{BE}{BC}=\frac{AE}{AH}\)
\(\Rightarrow\frac{cosBAC}{sinABC.sinACB}=\frac{AE}{AB}:\left(\frac{AD}{AB}.\frac{AE}{AH}\right)=\frac{AE}{AB}.\frac{AB.AH}{AD.AE}=\frac{AH}{AD}\)
Vậy\(AD.cosBAC=AH.sinABC.sinACB\left(đpcm\right)\)