Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình vẽ ko chuẩn xác cho lắm
Chứng minh \(\Delta AHC\)là \(\Delta\)vuông
Xét \(\Delta ECI\)và \(\Delta DBI\)có:
\(EI=ID\) ( giả thiết )
\(BI=IC\)( I là trung điểm của \(BC\))
\(\widehat{EIC}=\widehat{DIB}\)( 2 góc đối đỉnh)
do đó \(\Delta ECI=\Delta DBI\)( C.G.C)
\(\Rightarrow\widehat{CEI}=\widehat{BDI}\)( 2 góc tương ứng)
\(\Rightarrow EC\)song song với \(BD\)
mà \(H\)là giao điểm của \(EC\)và \(AB\)
\(\Rightarrow H\in EC\)
\(\Rightarrow HC\)song song với \(BD\)
theo bài ra \(BD\perp AB\)cắt \(AI\)tại \(D\)
\(\Rightarrow HC\perp AB\) ( 2 góc ở vị trí đồng vị do \(HC\)và \(BD\)tạo thành)
\(\Rightarrow\Delta AHC\)vuông tại \(H\) ( điều phải chưng minh)
vậy \(\Delta AHC\)vuông tại \(H\)
KS CHO TỚ ĐÃ TỚ GIẢI
thôi mà
giải đi